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LAST TIME:

Infinite 1-D Lattice II

    H2
+ localization ↔ tunneling:  overlap

bonding and antibonding orbitals

  

R vs. 

distance below top
of barrier

a n0
2









1-D ∞ lattice:  1 state per ion

tunneling only between nearest neighbors
∞ H matrix

0 = cq (E0 – E) – A(cq–1 + cq+1) ∞ # of coupled equations

Usually solve for {cq} by setting determinant of coefficients = 0

and solving for E.  Can’t do this because determinant is ∞.

TRICK: expect equal probability of finding e– on each lattice site by analogy to
plane wave eikx, where probability density is uniform at all sites along x,
try
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TIGHT-BINDING (Kronig-Penney) Model (see Baym pp. 116-122)

Notice that this is similar to free particle eikx, which seems rather strange because
particle is never really free in “tight-binding” model.

Variational wavefunction.  Minimize E.
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E varies continuously over an interval 4A, where A is the adjacent site interaction strength
or the “tunneling integral”

What happens when we look at k outside -π/l ≤ k < π/l
“1st Brillouin Zone”
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(one additional
wavelength per
lattice spacing l)

wavefunction is unchanged!
So if k goes outside 1st Brillouin Zone, get same ψ, so get same E
nothing new!
No point in allowing k to vary more widely than –π/l ≤ k ≤ π/l.
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Unanswered Questions:

1. How many distinct orbitals are there in a band?

2. What happens at E > E0 + 2A?

3. Orbitals not states!  Two spin-orbitals per orbital.

4. How many e– does each atom contribute to ψ?

N-atom periodic array.  Periodic Boundary conditions:

  

longest =

shortest =
N possible value of 

 in N steps

infinite lattice:   contains all the states generated

from one state per atom.
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gap – no states allowed
next higher state of each atom?
free particle if E > work function

Antisymmetrization.
Lowest band:  all spins paired.  No G term.
e– – e– repulsion raises overall E above that of single state

of each atom
Work function is smaller than single atom IP

alkali: 1e– ∅ half full band

alkaline earth:  2e–∅ full band
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      Now take a closer look at ϕk x( )
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translation of
plane wave by l

    implies that it is possible to write  in more general formkϕ ( )x

ϕk
ikx

kx e u x( ) ( )= Bloch wave function
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 conveys translational symmetry of plane wave with wavevector 
 conveys translational symmetry of lattice with spacing ( ) l
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Localized time dependent state : wavepacket
We are gong to build intuitive insight by comparison to free particle.

Recall free particle:

Group velocity: motion of stationary phase point (stationary with respect to k near k0)
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Up to here we have been analyzing the free particle.

for 1–D lattice

instead of asking for location of stationary phase point, ask for time dependent overlap of Ψ(t)

with specific lattice site νq〉.
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meaningful only for
regions of x near ql

ask for stationary phase factor (near x = 0, ±l, ±2l, …) with respect to k
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We can use either
state vector or
wavefunction picture.
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quite different from
plane wave result
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wavepacket is created
centered at k=k0

Note that vG = 0 when k0 is at bottom (k0 =
0) or top (k0= ±π/l) of band.

Up to here, everything is identical for free
particle and motion in a periodic lattice.

Now use E×k relationship derived for
periodic (tight binding) lattice.
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bottom of band
Not a surprise
because expect
 k = 0 ∅ v = 0

top of band
Big surprise.
Use concept of
”effective mass”
to rationalize.

e– cannot move if it is too close to edges of band

“Effective Mass:” free    vs. lattice

    

at small k

k k
0

0 0

l

l lsin ≈

compare the terms and identify reciprocal of the
coefficient of hk0:

  

* [

*

* /

v A

v

v k k

G

G

G

∝

∝ ↓ ↑( )

= = = ±π

as | A |  increases it becomes easier to take a step]

 but A  as 

 when  and when 

l l

l0 00 0

(because tunneling rate decreases as l
increases) but if A is kept constant as l
increases, each step is longer so velocity will
be higher

  
v

k
mG =

h 0

  
v

A k
k

A
G = ≈







2 20
0

2

2

l l

h
h

l

h

sin

near
bottom of
band

* large interaction strength makes meff

small
* large l makes meff small (large jumps)

  

m
A

k

Next m

k

eff

eff

 at small 

How do we show that  increases to  

at band edges 

=

∞
= ±π

h

l

l

2

2 02
l

:  

( / )?

Building of intuition:



38 - 95.73 Lecture #38

updated September 19, 20032:22 PM

Alternative approach to meff:
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