One Dimensional Lattice: Weak Coupling Limit

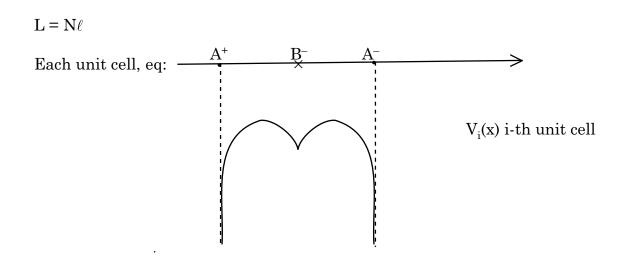
See Baym "Lectures on Quantum Mechanics" pages 237-241.

Each atom in lattice represented as a 1-D V(x) that could bind an unspecified number of electronic states.

Lattice could consist of two or more different types of atoms.

Periodic structure: repeated for each "unit cell", of length ℓ .

Consider a finite lattice (N atoms) but impose periodic (head-to-tail) boundary condition.



This is an infinitely repeated finite interval: Fourier Series

$$V(x) = \sum_{n=-\infty}^{\infty} e^{iKnx} V_n$$

$$K = \frac{2\pi}{\ell}$$
 "reciprocal lattice vector"

 V_n is the (possibly complex) Fourier coefficient of the part of V(x) that looks like a free particle state with wave-vector Kn (momentum $\hbar Kn$). Note that Kn is larger than the largest k (shortest λ) free particle state that can be supported by a lattice of spacing ℓ .

$$Kn=n\frac{2\pi}{\ell}$$
 , first Brillouin Zone for k
$$-\frac{\pi}{\ell} \leq k \leq \frac{\pi}{\ell}$$

We will see that the lattice is able to exchange momentum in quanta of $\hbar nK$ with the free particle. In 3-D, \vec{K} is a vector.

To solve for the effect of V(x) on a free particle, we use perturbation theory.

1. Define basis set.

$$\mathbf{H}^{(0)} = \frac{\mathbf{p}^2}{2m} = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2}$$

$$\mathbf{V}^{(0)} = \text{constant}$$

$$\mathbf{\psi}_k^{(0)} = \mathbf{L}^{-1/2} e^{ikx}$$

$$\mathbf{E}_k^{(0)} = \frac{\hbar^2 k^2}{2m}$$

$$^{2.}\qquad \mathbf{H}^{(1)}=\sum_{n=-\infty}^{\infty}~e^{iKn}V_{n}$$

$$\begin{split} \text{Matrix elements:} \ \ H_{k'k}^{(1)} &= \int_0^L \! dx \Big[L^{-1/2} e^{-ik'x} \Big] \! \Bigg[\sum_n e^{iKnx} V_n \, \Bigg] \! \Big[L^{-1/2} e^{ikx} \Big] \\ H_{k'k}^{(1)} &= \frac{1}{L} \int_0^L \! dx \sum_n \, e^{ix(k+Kn-k')} V_n \, \end{aligned}$$

integral = 0 if
$$k + Kn - k' \neq 0$$

$$\therefore k' = k + Kn$$

$$H_{k'k}^{(1)} = \frac{1}{L} L \sum_{n} V_{n} \delta_{k',k+Kn} = \sum_{n} V_{n} \delta_{k',k+Kn}$$

Must be careful about $H_{kk'}^{(1)}$ (relative to $H_{k'k}^{(1)}$)

$$\begin{split} H_{kk'}^{(1)} &= \frac{1}{L} \int_0^L \! dx \sum_n \; e^{ix(-k+Kn+k')} V_n = \sum_n \; V_n \delta_{k',k-Kn} \\ \text{but Hermitian } \mathbf{H} \; \text{requires} \; H_{kk'}^{(1)} &= H_{k'k}^{(1)*} \end{split}$$

$$\therefore \sum_{n} V_{n} \delta_{k',k-Kn} = \sum_{n} V_{n}^{*} \delta_{k',k+Kn}$$
true if $V_{n} = V_{-n}^{*}$

So now that we have the matrix elements of $\mathbf{H}^{(0)}$ and $\mathbf{H}^{(1)}$, the problem is essentially solved. All that remains is to plug into perturbation theory and arrange the results.

3. Solve for
$$\psi_k = \psi_k^{(0)} + \psi_k^{(1)}$$

$$\psi_k^{(0)} = L^{-1/2} e^{ikx}$$

$$\psi_{k}^{(1)} = L^{-1/2} \sum_{n}' \frac{H_{kk}^{(1)} e^{ik'x}}{E_{k}^{(0)} - E_{k'}^{(0)}} = L^{-1/2} \sum_{n}' \frac{V_{n} \delta_{k',k-Kn} e^{ik'x}}{E_{k}^{(0)} - E_{k-Kn}^{(0)}} \left(\Sigma' \text{ means } k' \neq k \right)$$

$$\psi_{k}^{(1)} = L^{-1/2} \sum_{n}' \frac{V_{n} e^{i(k-Kn)x}}{E_{k}^{(0)} - E_{k-Kn}^{(0)}}$$

$$\psi_k^{(1)*} = L^{-1/2} \sum_n' \frac{V_n^* e^{-i(k-Kn)x}}{E_k^{(0)} - E_{k-Kn}^{(0)}}$$

$$V_n^* = V_{-n}$$

$$\psi_k^{(1)*} = L^{-1/2} \sum_n' \frac{V_{-n} e^{-i(k-Kn)x}}{E_k^{(0)} - E_{k-Kn}^{(0)}} = L^{-1/2} \sum_{-n}' \frac{V_n e^{-i(k+Kn)x}}{E_k^{(0)} - E_{k+Kn}^{(0)}}$$

But n is just a dummy index, so replace -n by n.

4. Use ψ_k and ψ_k^* to compute $E_k = E_k^{(0)} + E_k^{(1)} + E_k^{(2)}$.

Rather than use the usual formula for $E^{(2)}$, go back to the λ^n formulation of perturbation theory.

$$E_{k} = \lambda^{0} E_{k}^{(0)} + \lambda^{1} E_{k}^{(1)} + \lambda^{2} E_{k}^{(2)} = \left\langle \psi_{k} \middle| \lambda^{0} \mathbf{H}^{(0)} + \lambda^{1} \mathbf{H}^{(1)} \middle| \psi_{k} \right\rangle$$

Retain terms only through λ^2

$$\begin{split} E_k &= \frac{1}{L} \int_0^L \! dx \Bigg[e^{-ikx} + \lambda \sum_n' \frac{V_n e^{-i(k+Kn)x}}{E_k^{(0)} - E_{k+Kn}^{(0)}} \Bigg] \! - \! \frac{\hbar^2}{2m} \frac{d^2}{dx^2} + \lambda \sum_m V_m e^{iKmx} \Bigg] \\ &\times \! \Bigg[e^{ikx} + \lambda \sum_{n'}' \frac{V_n' e^{i(k-Kn')x}}{E_k^{(0)} - E_{k-Kn'}^{(0)}} \Bigg] \end{split}$$

$$\begin{split} E_k^{(0)} &= \lambda^0 \frac{1}{L} \Bigg[-\frac{\mathbf{h}^2}{2m} (-k^2) L \Bigg] = \lambda^0 \frac{\mathbf{h}^2 k^2}{2m} \qquad \left[\text{recall } \frac{d^2}{dx^2} e^{ikx} = -k^2 e^{ikx} \right] \\ E_k^{(0)} &= \lambda^1 \frac{1}{L} \Bigg[\int dx \ e^{-ikx} \sum_m \ e^{iKmx} V_m e^{ikx} + 2 \ \text{terms involving} \left(-\frac{\mathbf{h}^2}{2m} \frac{d^2}{dx^2} \right) \Bigg] \end{split}$$

1st term, only m=0 term in sum gives nonzero integral. 2nd terms, need n or n'=0 term from sum, but these are excluded by Σ' .

$$E_k^{(1)} = \lambda^1 \frac{1}{L} L V_0 = \lambda^1 V_0$$

$$\begin{split} E_k^{(2)} &= \frac{1}{L} \lambda^2 \Bigg[\int \! dx \; e^{-ikx} \sum_{m=-\infty}^{\infty} V_m e^{iKmx} \sum_{n'=-\infty}^{\infty} \frac{V_{n'} e^{i(k-Kn')x}}{E_k^{(0)} - E_{k-Kn'}^{(0)}} \\ &+ \int \! dx \sum_{n \neq 0}' \frac{V_n e^{-i(k+Kn)x}}{E_k^{(0)} - E_{k+Kn}^{(0)}} \Bigg(\sum_m V_m e^{iKm} \Bigg) e^{ikx} \Bigg] \end{split}$$

1st term
$$0 = -k + Km + k - Kn'$$
, requires $m = n'$
2nd term $0 = -k - Kn + Km + k$, requires $m = n$

$$\begin{split} E_k^{(2)} &= \frac{1}{L} \lambda^2 \Bigg[\int \! dx \, \Sigma' \, \frac{V_m^2}{E_k^{(0)} - E_{k-Km}^{(0)}} + \! \int \! dx \, \Sigma' \, \frac{V_m^2}{E_k^{(0)} - E_{k+Km}^{(0)}} \Bigg] \\ E_k^{(2)} &= 2 \lambda^2 \, \sum_{m=-\infty}^{\infty} \! \frac{V_n^2}{E_k^{(0)} - E_{k+Kn}^{(0)}} \end{split}$$

Combine terms for n and – n and sum $\sum_{n=1}^{\infty}$

$$\begin{split} E_k^{(0)} - E_{k \pm Kn}^{(0)} &= \frac{\hbar^2}{2m} \big[k^2 - (k \pm Kn)^2 \big] = \frac{\hbar^2 Kn}{2m} \big[Kn \pm 2k \big] \\ \frac{1}{E_k^{(0)} - E_{k + Kn}^{(0)}} + \frac{1}{E_k^{(0)} - E_{k - Kn}} = \frac{4m}{\hbar^2} \frac{1}{K^2 n^2 - 4k^2} \\ E_k^{(2)} &= \frac{8m}{\hbar^2} \sum_{n=1}^{\infty} \ \frac{V_n^2}{K^2 n^2 - 4k^2} \end{split}$$

But there are many zeroes in this denominator as n goes $0 \rightarrow \infty$.

Must use degenerate perturbation theory for each small denominator.

Recall
$$\begin{pmatrix} E_k & V \\ V & E_{k'} \end{pmatrix} \longrightarrow E_{\pm} = \frac{E_k + E_{k'}}{2} \pm \left[\left(\frac{E_k - E_{k'}}{2} \right)^2 + V^2 \right]^{1/2}$$

$$E_{k} = \frac{\hbar^{2}k^{2}}{2m} + V_{0} + \frac{8m}{\hbar^{2}} \sum_{n=1}^{\infty} \frac{V_{n}^{2}}{K^{2}n^{2} - 4k^{2}}$$

zeroes at
$$k = \pm \frac{Kn}{2} = \pm \frac{2\pi}{2l} n = \pm \frac{n\pi}{l}$$
 except $n = 0$

at k = 0, there are no nearby zeroes

$$\frac{dE_k}{dk}\Big|_{k=0} = \frac{\hbar k}{m}$$
 (minimum at $k = 0$)

$$\frac{d^2 E_k}{dk^2}\Big|_{k=0} = \frac{\hbar}{m}$$
 (positive curvature)

just like free particle!

At $k = \pm \frac{K}{2}$, there are zeroes in denominator, so there is a gap in energy of

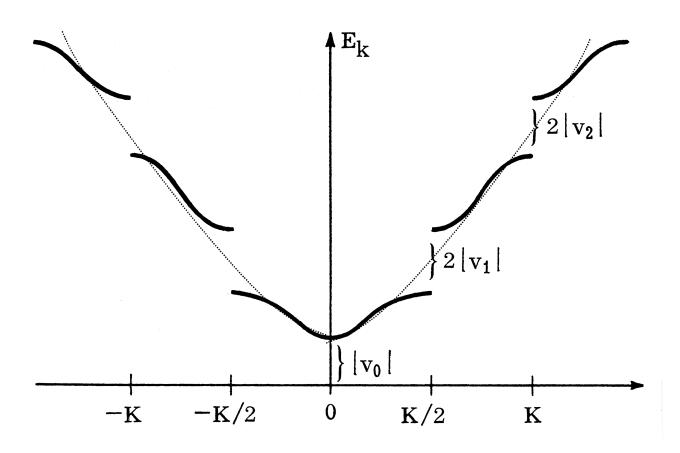
$$2|V_1|$$
 at $k = \pm \frac{K}{2}$

$$2|V_2| \text{ at } k = \pm K$$

:

$$2|V_n| \text{ at } k = \pm \frac{nK}{2}$$

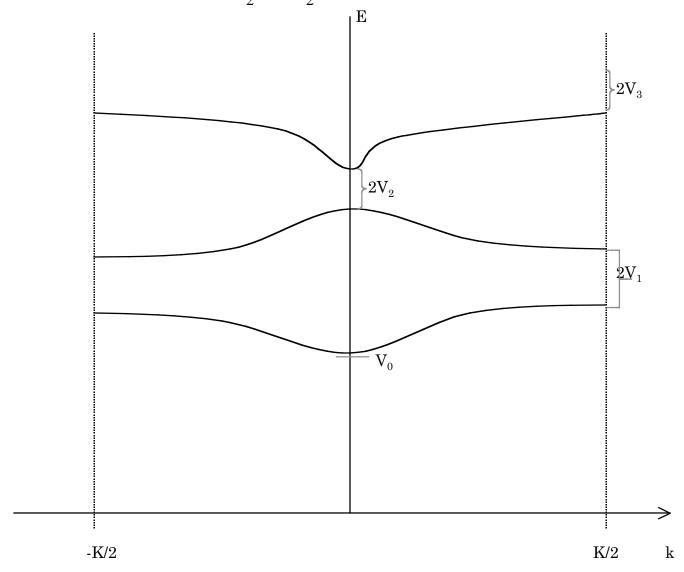
What does this look like?



$$E = V_0 + \left(\frac{\hbar^2}{2m}\right) k^2$$

look at text Baym page 240.

But we want to shift each of the segments by integer times K to left or right so that they all fit within the $\frac{-K}{2} \le k \le \frac{K}{2}$ "first Brillouin Zone".



k diagram. Curvature gives m_{eff}

3-D k - diagram — much more information. Tells where to find allowed transitions as function of 3-D \vec{k} vector in reciprocal lattice of lattice vector \vec{K} .

Scattering of free particle off lattice. Conservation of momentum in the sense $\vec{k}_{\text{final}} - \vec{k}_{\text{initial}} = \vec{K}.$