Interaction of Light with Matter

We want to derive a Hamiltonian that we can use to describe the interaction of an electromagnetic field with charged particles: Electric Dipole Hamiltonian.

Semiclassical: matter treated quantum mechanically
Field: classical

Brief outline of electrodynamics: See nonlecture handout. Also, see Jackson, Classical Electrodynamics, or Cohen-Tannoudji, et al., Appendix III.
$>$ Maxwell's Equations describe electric and magnetic fields (\bar{E}, \bar{B}).
$>$ For Hamiltonian, we require a potential.
$>$ To construct a potential representation of \bar{E} and \bar{B}, you need a vector potential $\bar{A}(\bar{r}, t)$ and a scalar potential $\varphi(F, t)$.
$>\bar{A}$ and φ are mathematical constructs that can be written in various representations (gauges).

We choose a gauge such that $\varphi=0$ (Coulomb gauge) which leads to plane-wave description of \bar{E} and \bar{B} :

$$
\begin{aligned}
& -\bar{\nabla}^{2} \bar{A}(\bar{r}, t)+\epsilon_{0} \mu_{0} \frac{\partial^{2} \bar{A}(\bar{r}, t)}{\partial t}=0 \\
& \bar{\nabla} \cdot \bar{A}=0
\end{aligned}
$$

This wave equation allows the vector potential to be written as a set of plane waves:

$$
\bar{A}(\bar{r}, t)=A_{0} \hat{\in} e^{i(\bar{k} \cdot \bar{r}-\omega t)}+A_{0}^{*} \hat{\in} e^{-i(\bar{k} \cdot \bar{r}-\omega t)} \quad \text { (oscillates as } \cos \omega t \text {) }
$$

since $\bar{\nabla} \cdot \bar{A}=0, \quad \bar{k} \cdot \hat{\epsilon}=0 \Rightarrow \bar{k} \perp \hat{\epsilon}$ where $\hat{\epsilon}$ is the polarization direction of the vector potential.

$$
\begin{aligned}
& \overline{\mathrm{E}}=-\frac{\partial \overline{\mathrm{A}}}{\partial \mathrm{t}}=\mathrm{i} \omega \mathrm{~A}_{0} \hat{\epsilon} \mathrm{e}^{\mathrm{i}(\overline{\mathrm{k}} \cdot \overline{\mathrm{r}}-\omega \mathrm{t})}+\mathrm{c.c} . \\
& \overline{\mathrm{B}}=\bar{\nabla} \times \overline{\mathrm{A}}=\mathrm{i} \underbrace{(\overline{\mathrm{k}} \times \bar{\epsilon})}_{\hat{\mathrm{b}} \mathrm{k} \mid} \mathrm{A}_{0} \mathrm{e}^{\mathrm{i}(\overline{\mathrm{k}} \cdot \overline{\mathrm{~T}}-\omega \mathrm{t})}+\text { c.c }
\end{aligned}
$$

so we see that $\hat{k} \perp \hat{\epsilon} \perp \hat{n}$
$\hat{\epsilon}$ is the direction of the electric field polarization and \hat{n} is the direction of the magnetic field polarization.

We define $\frac{1}{2} E_{0}=i \omega A_{0}$

$$
\begin{aligned}
& \frac{1}{2} B_{0}=i|k| A_{0} \quad\left(\frac{E_{0}}{B_{0}}=\frac{\omega}{k}=c\right) \\
& \overline{\mathrm{E}}(\overline{\mathrm{r}}, \mathrm{t})=\left|\mathrm{E}_{0}\right| \hat{\epsilon} \sin (\overline{\mathrm{k}} \cdot \overline{\mathrm{r}}-\omega \mathrm{t}) \\
& \overline{\mathrm{B}}(\overline{\mathrm{r}}, \mathrm{t})=\left|\mathrm{B}_{0}\right| \hat{\mathrm{b}} \sin (\overline{\mathrm{k}} \cdot \overline{\mathrm{r}}-\omega \mathrm{t})
\end{aligned}
$$

Hamiltonian for radiation field interacting with charged particle

We will derive a Lagrangian for charged particle in field, then use it to determine classical Hamiltonian, then replace classical operators with quantum.

Start with Lorentz force on a charged particle:

$$
\begin{equation*}
\mathrm{F}=\mathrm{q}(\overline{\mathrm{E}}+\overline{\mathrm{v}} \times \overline{\mathrm{B}}) \tag{1}
\end{equation*}
$$

where $\dot{\overline{\mathrm{r}}}$ is the velocity. In one direction (x), we have:

$$
\begin{equation*}
\mathrm{F}_{\mathrm{x}}=\mathrm{q}\left(\mathrm{E}_{\mathrm{x}}+\dot{\mathrm{y}} \mathrm{~B}_{\mathrm{z}}-\dot{\mathrm{z}} \mathrm{~B}_{\mathrm{y}}\right) \tag{2}
\end{equation*}
$$

The generalized force for the components of the force in the x direction in Lagrangian Mechanics is:

$$
\begin{equation*}
\mathrm{F}_{\mathrm{x}}=-\frac{\partial \mathrm{U}}{\partial \mathrm{x}}+\frac{\mathrm{d}}{\mathrm{dt}}\left(\frac{\partial \mathrm{U}}{\partial \dot{\mathrm{x}}}\right) \tag{3}
\end{equation*}
$$

U is the potential. Using our relationships for \bar{E} and \bar{B} in terms of A and φ in eq. (2) and working it into the form of eq. (3), we can show that:

$$
\begin{equation*}
\mathrm{U}=\mathrm{q} \varphi-\mathrm{q} \dot{\overline{\mathrm{r}}} \cdot \mathrm{~A} \tag{4}
\end{equation*}
$$

See CTDL, app. III, p. 1492. Confirm by plugging into (3).
Now we can write a Lagrangian

$$
\begin{align*}
L & =T-U \\
& =\frac{1}{2} \dot{\mathrm{~m}}^{2}+\mathrm{q} \dot{\overline{\mathrm{r}}} \cdot \mathrm{~A}-\mathrm{q} \varphi \tag{5}
\end{align*}
$$

Now the Hamiltonian is related to the Lagrangian at:

$$
\begin{align*}
\mathrm{H} & =\overline{\mathrm{p}} \cdot \dot{\overline{\mathrm{r}}}-\mathrm{L} \\
& =\overline{\mathrm{p}} \cdot \dot{\overline{\mathrm{r}}}-\frac{1}{2} \mathrm{~m} \dot{\overline{\mathrm{r}}}^{2}-\mathrm{q} \dot{\overline{\mathrm{r}}} \cdot \overline{\mathrm{~A}}-\mathrm{q} \varphi \tag{6}\\
\overline{\mathrm{p}} & =\frac{\partial \mathrm{L}}{\partial \dot{\overline{\mathrm{r}}}}=\mathrm{m} \dot{\overline{\mathrm{r}}}+\mathrm{q} \overline{\mathrm{~A}} \Rightarrow \dot{\overline{\mathrm{r}}}=\frac{1}{\mathrm{~m}}(\overline{\mathrm{p}}-\mathrm{q} \overline{\mathrm{~A}}) \tag{7}
\end{align*}
$$

Now substituting (7) into (6), we have:

$$
\begin{aligned}
& H=\frac{1}{m} \bar{p} \cdot(\bar{p}-q \bar{A})-\frac{1}{2 m}(\bar{p}-q \bar{A})^{2}-\frac{q}{m}(\bar{p}-q \bar{A}) A+q \varphi \\
& H=\frac{1}{2 m}[\bar{p}-q \bar{A}(\bar{r}, t)]^{2}+q \varphi(\bar{r}, t)
\end{aligned}
$$

This is the classical Hamiltonian for a particle of charge q in an electromagnetic field. So, in the Coulomb gauge ($\varphi=0$), we have the Hamiltonian for a collection of particles in the absence of a field:

$$
H_{0}=\sum_{i}\left(\frac{\bar{p}_{i}^{2}}{2 m_{i}}+V_{0}\left(\bar{r}_{i}\right)\right)
$$

and in the presence of the field:

$$
\mathrm{H}=\sum_{\mathrm{i}}\left(\frac{1}{2 \mathrm{~m}_{\mathrm{i}}}\left(\overline{\mathrm{p}}_{\mathrm{i}}-\mathrm{q}_{\mathrm{i}} \overline{\mathrm{~A}}\left(\overline{\mathrm{r}_{\mathrm{i}}}\right)\right)^{2}+\mathrm{V}_{0}\left(\mathrm{r}_{\mathrm{i}}\right)\right)
$$

Expanding:

$$
\mathrm{H}=\mathrm{H}_{0}-\sum_{\mathrm{i}} \frac{\mathrm{q}_{\mathrm{i}}}{2 \mathrm{~m}_{\mathrm{i}}}\left(\mathrm{p}_{\mathrm{i}} \cdot \overline{\mathrm{~A}}+\overline{\mathrm{A}} \cdot \overline{\mathrm{p}}_{\mathrm{i}}\right)+\sum_{j} \frac{\mathrm{q}_{\mathrm{i}}}{2 \mathrm{~m}_{\mathrm{i}}}|\overline{\mathrm{~A}}|^{2}
$$

Generally the last term is considered small—energy of particles high relative to amplitude of potential-so we have:

$$
\begin{aligned}
& H=H_{0}+V(t) \\
& V(t)=\sum_{i} \frac{q_{i}}{2 m_{i}}\left(\bar{p}_{i} \cdot \bar{A}+\bar{A} \cdot \bar{p}_{i}\right)
\end{aligned}
$$

Now we are in a position to substitute the quantum mechanical momentum for the classical:

$$
\begin{array}{ll}
\bar{p}=-i \hbar \bar{\nabla} & \text { Matter: Quantum; Field (A): Classical } \\
V(t)=\sum_{i} \frac{i \hbar}{2 m_{i}} q_{i}\left(\bar{\nabla}_{i} \cdot \bar{A}+\bar{A} \cdot \bar{\nabla}_{i}\right) &
\end{array}
$$

Notice $\bar{\nabla} \cdot \bar{A}=(\bar{\nabla} \cdot \bar{A})+\bar{A} \cdot \bar{\nabla}$ (chain rule), but we are in the Coulomb gauge $(\bar{\nabla} \cdot \bar{A}=0)$, so $\bar{\nabla} \cdot \bar{A}=\bar{A} \cdot \bar{\nabla}$

$$
\begin{aligned}
V(t) & =\sum_{i} \frac{i \hbar q_{i}}{m_{i}} \bar{A} \cdot \bar{\nabla}_{i} \\
& =-\sum_{i} \frac{q_{i}}{m_{i}} \bar{A} \cdot \bar{p}_{i}
\end{aligned}
$$

For a single charge particle our interaction Hamiltonian is

$$
V(t)=\frac{-q \cdot}{m} \cdot \bar{A} \cdot \bar{p}
$$

Using our plane-wave description of the vector potential:

$$
V(t)=\frac{-q}{m}\left[A_{0} \hat{\epsilon} \cdot \bar{p} e^{i(\bar{k} \cdot \bar{r}-\omega t)}+\text { c.c. }\right]
$$

Electric Dipole Approximation

If the wavelength of the field is much larger than the molecular dimension $(\lambda \rightarrow \infty)(|k| \rightarrow 0)$, then $e^{i \vec{k} \cdot \vec{r}} \rightarrow 1$.

If r_{0} is the center of mass of a molecule:

$$
\begin{aligned}
e^{i \bar{k} \cdot \bar{r}_{i}} & =e^{i \bar{k} \cdot \bar{r}_{0}} e^{i \bar{k} \cdot\left(\bar{r}_{i}-\bar{r}_{0}\right)} \\
& =e^{i \bar{k} \cdot \bar{r}_{0}}\left[1+i \bar{k} \cdot\left(\bar{r}_{i}-\bar{r}_{0}\right)+\ldots\right]
\end{aligned}
$$

For UV, visible, infrared-not X-ray-|k|| $\bar{r}_{i}-\bar{r}_{0} \mid \ll 1$, set $\bar{r}_{0}=0 \quad e^{i \bar{k} \cdot \bar{r}} \rightarrow 1$.
We do retain higher-order terms to describe higher order interactions with the field.
Retain second term for quadrupole transition moment: charge distribution interacting with gradient of electric field and magnetic dipole.

Electric Dipole Hamiltonian

$$
V(t)=\frac{-q}{m}\left[A_{0} \hat{\epsilon} \cdot \bar{p} e^{-i \omega t}+c . c .\right]
$$

Using $A_{0}=\frac{i E_{0}}{2 \omega}$

$$
\begin{aligned}
\mathrm{V}(\mathrm{t}) & =\frac{-\mathrm{iqE}}{2 \mathrm{E}} \\
2 \mathrm{~m} \omega & \left.\hat{\epsilon} \cdot \overline{\mathrm{p}} \mathrm{e}^{-\mathrm{i} \omega \mathrm{t}}-\hat{\epsilon} \cdot \overline{\mathrm{p}} \mathrm{e}^{+\mathrm{i} \omega t}\right] \\
\mathrm{V}(\mathrm{t}) & =\frac{-\mathrm{qE}}{\mathrm{~m} \omega}(\hat{\epsilon} \cdot \overline{\mathrm{p}}) \sin \omega \mathrm{t} \\
& =\frac{-\mathrm{q}}{\mathrm{~m} \omega}(\overline{\mathrm{E}}(\mathrm{t}) \cdot \overline{\mathrm{p}})
\end{aligned}
$$

$$
\mathrm{V}(\mathrm{t})=\frac{-\mathrm{qE}}{\mathrm{~m}} \mathrm{~m}_{0}(\hat{\epsilon} \cdot \overline{\mathrm{p}}) \sin \omega \mathrm{t} \quad \quad \text { Electric Dipole Hamiltonian }
$$

or for a collection of charge particles (molecules):

$$
V(\mathrm{t})=-\left(\sum_{\mathrm{i}} \frac{\mathrm{q}_{\mathrm{i}}}{\mathrm{~m}_{\mathrm{i}}}\left(\hat{\epsilon} \cdot \mathrm{p}_{\mathrm{i}}\right)\right) \frac{\mathrm{E}_{0}}{\omega} \sin \omega \mathrm{t}
$$

Harmonic Perturbation: Matrix Elements

For a perturbation $V(t)=V_{0} \sin \omega t$ the rate of transitions induced by field is

$$
w_{k \ell}=\frac{\pi}{2 \hbar}\left|V_{k \ell}\right|^{2}\left[\delta\left(E_{k}-E_{\ell}-\hbar \omega\right)+\delta\left(E_{k}-E_{\ell}+\hbar \omega\right)\right]
$$

Let's look at the matrix elements for the E.D.H.

$$
V_{k \ell}=\langle k| V_{0}|\ell\rangle=\frac{q E_{0}}{m \omega}\langle k| \hat{\epsilon} \cdot \bar{p}|\ell\rangle
$$

Evaluate the bracket $\langle k| \bar{p}|\ell\rangle$ using $\left[\bar{r}, H_{0}\right]=\frac{i \hbar \bar{p}}{m}$

$$
\begin{aligned}
\langle k| \bar{p}|\ell\rangle & =\frac{m}{i \hbar}\langle k| \bar{r} H_{0}-H_{0} \bar{r}|\ell\rangle \\
& \left.=i m \omega_{k \ell}\right\rfloor\langle\bar{r} \mid \ell\rangle \\
\therefore \mathrm{V}_{\mathrm{k} \ell} & =\mathrm{iqE} \\
0 & \frac{\omega_{\mathrm{k} \ell}}{\omega}\langle\mathrm{k}| \hat{\epsilon} \cdot \overline{\mathrm{r}}|\ell\rangle
\end{aligned}
$$

or for a collection of particles

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{k} \ell}=\mathrm{iE}_{0} \frac{\omega_{\mathrm{k} \ell}}{\omega}\langle\mathrm{k}| \hat{\epsilon} \cdot\left(\sum_{\mathrm{i}} \mathrm{q}_{\mathrm{i}} \overline{\mathrm{r}}\right)|\ell\rangle \\
& =\mathrm{iE}_{0} \frac{\omega \leftharpoonup \ell \ell}{\omega}\langle\mathrm{k}| \hat{\epsilon} \cdot \bar{\mu}|\ell\rangle \\
& \uparrow \text { dipole moment }
\end{aligned}
$$

So we can write the electric dipole Hamiltonian as

$$
\mathrm{V}(\mathrm{t})=-\bar{\mu} \cdot \overline{\mathrm{E}}(\mathrm{t})
$$

So the rate of transitions between quantum states induced by the electric field is

$$
\begin{aligned}
w_{k \ell} & \left.=\frac{\pi}{2 \hbar}\left|E_{0}\right|^{2} \frac{\omega_{k \ell}^{2}}{\omega^{2}} k k|\bar{\mu} \cdot \hat{\exists}| \ell\right\rangle^{2}\left[\delta\left(E_{k}-E_{\ell}-\hbar \omega\right)+\left(E_{k}-E_{\ell}+\hbar \omega\right)\right] \\
& \approx \frac{\pi}{\hbar^{2}}\left|E_{0}\right|^{2}\langle k| \bar{\mu} \cdot \hat{\exists}|\ell\rangle^{2}\left[\delta\left(\omega_{k \ell}-\omega\right)+\delta\left(\omega_{k \ell}+\omega\right)\right]
\end{aligned}
$$

