
1.00/1.001 - Spring 2010 - Final Exam 1 / 22

1.00/1.001

Introduction to Computers and Engineering Problem Solving

Spring 2010 - Final Exam

Name:

MIT Email:

TA:

Section:

You have 180 minutes to complete this exam. For coding questions, you do not need to
include comments, and you should assume that all necessary packages have already
been imported. Good luck!

Question 1

/ 20

Question 2

/ 15

Question 3

/ 15

Question 4

/ 20

Question 5 / 20

Question 6 / 10

Total

/ 100

1.00/1.001 - Spring 2010 - Final Exam 2 / 22

Question 1 - Inheritance and Interfaces

Congratulations! Hasbro wants to hire you to build a version of Monopoly® that people
can play on their computers. Using your extensive 1.00 knowledge, you set out to
complete this task.

Assume you initially start with a Player class that simply holds a player’s name. The
class isn’t important for this question, but we provide the code just to be complete.

public class Player {

 private String name;

 public Player(String name){ this.name = name; }

 public String getName() { return name; }

}

You know, from the game, that the game board has two types of squares. There are
property squares (squares that represent a certain street or railroad) and there are
action squares (such as “Go directly to jail” or “Pick a Chance card”). You decide to
use inheritance to help model these board elements.

The first thing you do is create an abstract class called Property. You make it
abstract because you realize there are many types of “property” in the game (players
can own locations on the board, houses, and hotels). The Property class contains:

 A private String called name, that holds the name of this Property.
 A private int called cost, that holds the cost to buy this Property.
 A private Player object called owner. Initially the owner data member is

set equal to null.
 Public get() methods for the three private data members, along with a

setOwner() method.
 An abstract method called costToOpponent(), which returns a value

that is used to calculate how much an opponent would owe the owner if
he/she landed on this piece of Property.

1.00/1.001 - Spring 2010 - Final Exam 3 / 22

public abstract class Property {

 private String name;

 private int cost;

 private Player owner;

 public Property(String name, int cost){

 this.name = name;

 this.cost = cost;

 this.owner = null;

 }

 public String getName() { return name; }

 public int getCost() { return cost; }

 public Player getOwner(){ return owner; }

 public void setOwner(Player buyer){ this.owner = buyer; }

 public abstract int costToOpponent();

}

1.a The next thing you need to do is create an interface for board squares. The
interface is called BoardSquare. Every square on the board must have a
position on the board (represented as an int). For example, Park Place is
located at position 37 on a game board. Write a BoardSquare interface that
guarantees that an object that implements BoardSquare will have a method
that returns its location.

1.00/1.001 - Spring 2010 - Final Exam 4 / 22

1.b You now put these parts together to create a concrete class called
PropertySquare. This class is used to represent all the locations on the board
that can be bought by Players. Write the PropertySquare class so that:

 It inherits from the abstract Property class.
 It implements the BoardSquare interface.

The value a Player must pay, if he/she lands on the square, is equal to half the cost
of buying the Property. (e.g., If it costs 350 dollars to buy “Park Place” then a player
must pay 175 dollars to the person who owns “Park Place”).

public class PropertySquare

{

}

1.00/1.001 - Spring 2010 - Final Exam 5 / 22

Assume that you have created another concrete class called ActionSquare that also
inherits from the BoardSquare interface. All squares on the board are either of type
ActionSquare or PropertySquare.

1.c You should also assume there is a class called Board that has methods that help

run the game. In the Board class, you want to write a public method called
isUnownedSquare(BoardSquare square). The method should:

 Take in a BoardSquare object.
 Return a boolean value of true if the square is a PropertySquare

and does not have an owner. Otherwise, return false.

public boolean isUnownedSquare(BoardSquare square)

{

}

1.00/1.001 - Spring 2010 - Final Exam 6 / 22

Question 2: Exceptions

You are writing a program that analyzes some geometrical data. The data is
stored as pairs of points and values in the following class.

public class PointValue{

 private double x;

 private double y;

 private double value;

 public PointValue(double x, double y, double v) {

 this.x = x;

 this.y = y;

 value = v;

 }

 public double getX() {return x;}

 public double getY() {return y;}

 public double getValue() {return value;}

}

There is also a class Polygon, which stores a sequence of points. It has a
method which determines whether a point is inside the polygon or not.

public class Polygon{

 // implementation hidden: constructor, data members, etc.

 public boolean contains(PointValue p){

 // implementation hidden

 // returns true if p is inside the Polygon

 // returns false if it is not

 }

}

You need to write a class that will store some PointValue objects, but only if
they are inside a specified Polygon. You decide to store the PointValues in
an ArrayList. You will create a PolygonList class that will only store
PointValues inside a specific Polygon, which is specified when the object
is created. You should not extend the ArrayList class, but instead you
should have an ArrayList inside your class. If someone tries to add a PointValue
to the list that is not inside the Polygon, the add method should throw a
PointOutOfBoundsException, defined as follows:

1.00/1.001 - Spring 2010 - Final Exam 7 / 22

public class PointOutOfBoundsException extends Exception {
 public PointOutOfBoundsException() {super();}

 public PointOutOfBoundsException(String s) {super(s);}

}

Write class PolygonList below:

public class PolygonList {

 // 2.a Put data members here

 // 2.b Write the constructor here

// 2.c The add method checks if the PointValue is actually

// inside the polygon. If the point is inside the polygon,

// add it to the list. Otherwise, throw a

// PointOutOfBoundsException. Write the add method here

1.00/1.001 - Spring 2010 - Final Exam 8 / 22

// 2.d Write a get(int n) method that returns the specified

// point from the ArrayList. The get method in ArrayList

// throws an IndexOutOfBoundsException exception in some

// cases. Use a try/catch block to catch that exception and

// return null

}

//end of PolygonList class

1.00/1.001 - Spring 2010 - Final Exam 9 / 22

Question 3 - Sorting and Hashing

3.a Many operations can be performed faster on sorted than on unsorted data. For
which of the following operations is this the case? We do not count the sorting
operation cost. Circle the ones which can perform faster on sorted data.

a. Finding the minimum value in the data

b. Computing an average of values

c. Finding the middle value (the median)

d. Finding the range of the data (maximum – minimum)

3.b True or False? (Circle one)

The running time of insertion sort O(n2) is always longer than the running time of
quicksort O(n lg n) on the same set of elements.

TRUE FALSE

If two objects have the same return value from their hashCode() methods, they are
equal objects.

TRUE FALSE

Quick sort uses pivot elements and partitioning.

TRUE FALSE

When sorting on an already sorted data, quick sort runs more quickly than insertion sort
does.

TRUE FALSE

To sort a large set of randomly ordered data, quick sort on average runs faster than
insertion sort.

TRUE FALSE

1.00/1.001 - Spring 2010 - Final Exam 10 / 22

3.c We are going to place the following values into a bad hash table, where chaining
is not used. Instead, our hashing is implemented by two hash functions. The
main hash function is (value / 100) .The secondary hash function is used when
two values are hashed into the same slot using the main hash function (i.e., a
collision occurs). The second hash function is (value % 100) / 10. The following
elements (all integers) are to be inserted into a hashtable of size 10.

47, 90, 426, 140, 135

3.c.1 Draw the table after the above elements are inserted.

0 1 2 3 4 5 6 7 8 9

3.c.2 The HashTable class below has a find method to check if a particular integer

value has been stored in the table. Implement the find(int i)method so that
it returns true if the integer value i is in the table, and false otherwise. Your
method should not loop through the entire array holding the integers.

public class HashTable {

private Integer[] table;

public HashTable(int capacity){

table= new Integer[capacity];

}

 public boolean find (int i){

 }

}

1.00/1.001 - Spring 2010 - Final Exam 11 / 22

Question 4 - Matrices and Recursion

In this question, you will implement a recursive method to compute the determinant of
any square matrix, of any size.

4.a You first need to write a helper method, which will be used later by the method

that computes the determinant.

The kth submatrix Mk of a square matrix M is obtained by deleting the first row and the
kth column from M, as shown in the example below:

co

lu
m

n
k

row 0 1 4 2 1
 3 -2 5 1 3 -2 1
 1 2 -1 -6 1 2 -6
 3 3 8 7 3 3 7

 Matrix M Submatrix Mk

The dimension of a square matrix is its number of rows or its number of columns, which
are equal. From a square matrix of dimension n, you can therefore extract n
submatrices, each of dimension (n-1).

You are given a SquareMatrix class. It is similar to the Matrix class from lecture,
but can only be used to represent square matrices. For example, the SquareMatrix
class has a single getDimension() method, while the Matrix class had the pair of
methods getRows() and getCols().

Complete the getSubMatrix(int k) method of the SquareMatrix class, which
should return the kth submatrix of the square matrix on which it is invoked. This first

method does not have to be recursive, and you can assume that 0 ≤ k ≤ n.

1.00/1.001 - Spring 2010 - Final Exam 12 / 22

public class SquareMatrix {

private double[][] data;

 public SquareMatrix(int n){data = new double[n][n];}

 public double getE(int i, int j){return data[i][j];}

 public void setE(int i, int j, double value)

{

data[i][j] = value;

}

 public int getDim(){return data.length;}

public SquareMatrix getSubMatrix(int k)

 {

}

// the getDeterminant()method (answer to next question)

// goes here.
}

1.00/1.001 - Spring 2010 - Final Exam 13 / 22

4.b The determinant |A| of a square matrix A of dimension n can be computed as:

where:

 a0k is the element of A located at row 0, column k.
 |Ak| is the determinant of the submatrix Ak, which is extracted from A as

described above.

For example, the determinant of a 3-by-3 matrix is:

While the matrix A is of dimension n, each submatrix Ak is of dimension (n-1).
Therefore, the determinant of a large matrix can be computed a sum of determinants of
smaller matrices. When a matrix is small enough, its determinant can be computed
directly. We know for example how to compute the determinant of a 2-by-2 matrix:

 = b00 b11 - b01 b10

And the determinant of a 1-by-1 matrix is its only element:

|c00| = c00

Complete the getDeterminant() method of the SquareMatrix class, which should
return the value of the determinant of the square matrix on which it is invoked. This

method must be recursive. Remember that a recursive method should directly return
the result if the input is small enough to do so, but should call itself in order to solve for
a larger input.

b00 b01
b10 b11

a00 a01 a02
a10 a11 a12
a20 a21 a22

= (-1)0 a00
a11 a12

+ (-1)1 a01
a10 a12

+ (-1)2 a02
a01 a11

a21 a22 a20 a22 a20 a21

1.00/1.001 - Spring 2010 - Final Exam 14 / 22

// This method is in the SquareMatrix class

public double getDeterminant() // Must be recursive

{

}

1.00/1.001 - Spring 2010 - Final Exam 15 / 22

Question 5 - Streams and Swing

It’s time to get excited! This question combines two of your favorite subjects: streams
and Swing. You will first be asked to write code that allows you to read and write files.
You will then be asked a question about the GUI that uses this code.

Imagine that you are building a small drawing program, where you use Line2D objects
to draw shapes on a GUI (such as the house in the screenshot below).

You quickly realize that it is important to be able to save your drawing, and load
drawings into your program. You decide to store drawings as text files.

Line2D objects will be stored as a single line separated by commas:
Example: “200,200,200,400” defines a Line that starts at (200,200) and ends at
(200,400).

So, the drawing of the house in the previous screenshot can be stored in a .txt file as:

200,200,200,400

400,200,400,400

200,400,400,400

175,200,425,200

175,200,300,50

425,200,300,50

© Oracle. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse

1.00/1.001 - Spring 2010 - Final Exam 16 / 22

You now need to create a specialized JPanel that can both load and save these files.
We’ve provided a class called StreamPanel that extends JPanel. You will be asked
to fill in the loadDrawingFromFile() and saveDrawingToFile() methods.

public class StreamPanel extends JPanel{

 // Name of file where drawings are saved to and loaded from

 private final String fileName = "examp_points.txt";

 // List of all the Lines to be drawn on the StreamPanel

 ArrayList<Line2D> lines = new ArrayList<Line2D>();

 public StreamPanel(){

 this.setPreferredSize(new Dimension(600, 600));

 }

 public void paintComponent(Graphics g){

 super.paintComponents(g);

 Graphics2D g2 = (Graphics2D) g;

 //draw all the lines

 for (Line2D l: lines) g2.draw(l);

 }

 // Loads in a drawing

 public void loadDrawingFromFile(){// FILL IN FOR PART 5A }

 // Saves the current drawing

 public void saveDrawingToFile(){// FILL IN FOR PART 5B }

 // Returns a Line2D object represented by String values

 private Line2D makeLine(String x1, String y1, String x2,

String y2){

 Double x1Val = Double.parseDouble(x1);

 Double y1Val = Double.parseDouble(y1);

 Double x2Val = Double.parseDouble(x2);

 Double y2Val = Double.parseDouble(y2);

 return new Line2D.Double(x1Val, y1Val, x2Val, y2Val);

 }

 // Takes in a Line2D object and returns a String

 // representation of it

 private String lineToString(Line2D l){

 String lString = l.getX1()+","+l.getY1()+","+

 l.getX2()+","+l.getY2()+"\n";

 return lString;

 }}

1.00/1.001 - Spring 2010 - Final Exam 17 / 22

5.a In the space below, fill in the loadDrawingFromFile() method for the
StreamPanel class.

 Be sure to use a BufferedReader to read in the Line2D objects from the file

represented by the fileName data member.
 Store each Line2D object in the lines data member (Hint: you may find the

makeLine() method useful for creating Line2D objects).
 Catch and print to the console the possible IOException thrown by opening a

stream.
 Remember this is a comma delimited file. Also, assume the file is formatted

properly and that all values in the file are valid doubles.

public void loadDrawingFromFile(){

}

1.00/1.001 - Spring 2010 - Final Exam 18 / 22

5.b In the space provided below, fill in the saveDrawingToFile() method for the
StreamPanel class. The method should save all the Line2D objects in the
lines list to the file represented by the fileName data member. Also,
remember to catch the possible IOException thrown by opening a stream.

Hint: you may find the lineToString() method useful for creating a String

representation of each line.

public void saveDrawingToFile(){

}

1.00/1.001 - Spring 2010 - Final Exam 19 / 22

5.c Imagine that you have a GUI called DrawingFrame that consists of a JFrame
with only a StreamPanel added to it. You’ve also been given a file whose
contents look like this:

50,100,50,200

50,100,400,100

50,200,400,200

400,100,400,50

400,200,400,250

400,50,550,150

400,250,550,150

Sketch what the resulting DrawingFrame GUI would look like if you ran the GUI and
loaded this file into the StreamPanel. The GUI size is 600x600.

1.00/1.001 - Spring 2010 - Final Exam 20 / 22

Question 6 - Data Structures

We have used stacks in class, but one thing you might not have known is that stacks
can actually be implemented by using linked lists. In this question, you will build a stack
class using linked lists.

We provide a simple implementation of a linked list and an interface for stack here. You
will use these in the implementation of your stack.

public class LinkedList {

 //Adds an Object o to the end of the Linked List

 public void add(Object o)

 { /* Implementation hidden */ }

 //Adds an Object o at index position to the Linked List

 public void add(Object o, int index)

 { /* Implementation hidden */ }

 //Returns the Object stored at the index position

 public Object get(int index)

 { /* Implementation hidden */ }

 //Removes the Object stored at the index position

 public void remove(int index)

 { /* Implementation hidden */ }

 //Returns the number of Objects in the Linked List

 public int size()

 { /* Implementation hidden */ }

 //Removes all the Objects from the Linked List

 public void clear()

 { /* Implementation hidden */ }

}

1.00/1.001 - Spring 2010 - Final Exam 21 / 22

public interface Stack

{

public boolean isEmpty();

public void push(Object o);

public Object pop();

public void clear();

}

6.a Complete the implementation of LLStack given below. You may ignore the case

of the pop() method being called on an empty stack.

public class LLStack implements Stack {

 private LinkedList ll;

 // Finish the rest of the implementation here

}

1.00/1.001 - Spring 2010 - Final Exam 22 / 22

6.b Indicate which data structure is the most appropriate representation for each of
these.

H
as

h
Ta

bl
e

S
ta

ck

Q
ue

ue

Tr
ee

A
rra

yL
is

t

Briefly explain your choice

Waiting list for a
class at Sloan

The people at the front of the waiting
list get taken off before the people

afterwards

Counting the
number of

occurrences of each
word in an article

This is an association between a word
and the number of occurrences

The order that you
get dressed and

undressed when it's
-40 (F or C)

The first article of clothing you put on is
the last article of clothing you take off

The species in the
Plant Kingdom

The species can be modeled as a
hierarchy

The shortest path
from MIT to many
points in Boston

Your path can branch in many ways
depending on where you are going

MIT OpenCourseWare
http://ocw.mit.edu

1.00 / 1.001 / 1.002 Introduction to Computers and Engineering Problem Solving
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

