

 

 

 
 

 

 

 

 

 

 

1.00 Lecture 26

Introduction to Sensors (Phidgets) II

Reading for next time: None

Jar files

•	 You must put the phidgets21.jar file into the Java

project for each lecture that uses Phidgets
–	 And other projects in which you use Phidgets

•	 Steps:
–	 Open the Java Properties/Java Build Path popup by

right clicking on the project
–	 Click "Add External Jars." and navigate to where you

unzipped the phidget21.jar file last time
–	 Select it and click Open, and then OK

•	 Side note: Jar (Java archive) files contain Java .class files
and are easy to create for GUI apps
–	 Right click on project in Eclipse
–	 Select Export; specify ��launch configuration� (which program

with a main() to use) and destination (folder) to write .jar file
–	 Try it after class with, e.g., BallController from lecture 22

1

 

 

 

 

 

 
 

 

 

 

 

 

 

Opening and closing Phidgets

•	 The first step to use a Phidget is to call open() or one of its

variants, like openAny()
– Sensors can be opened with or without their serial number

•	 open() returns immediately but the sensor must be attached
before it can be used
–	 We can either use waitForAttachment(timeout), which blocks

until the sensor is available
•	 If this call hangs, there is something wrong with the Phidget interface board

or the USB cable or the USB software has gotten confused

–	 Or listen for AttachEvent (preferred, but we use wait)
–	 open() is pervasive. Once open() has been called, it will try to

stay attached to the sensor.
–	 If the sensor is unplugged and then plugged back in, it will

give a DetachEvent and then an AttachEvent
•	 At the end of the program, call close()

Sensors and Time

•	 We will make one last set of changes to

PressureController, from last time
•	 The SensorChangeEvent events that
PressureController processes are issued
when the sensor value changes

•	 But we are often interested in sensor events in
relation to time

•	 If we want to calculate the average pressure value
over a period of time, we will need to run a timer
to sample the current sensor value at regular
intervals

2

 

 

 

 

 

 

 

Sensors and Time, 2

Time

Pressure

S
C
E

= SensorChangeEvent

40

120

80

Timer ActionEvents

S
C
E

S
C
E

Does average pressure = (40 + 120) / 2 = 80 or
= (0 + 12*40 + 3*120) / 16 = 52.5?

Pressure Averages

•	 Next exercise based on PPressureAvgController1

–	 Based on PressureController1, the solution from last time
–	 You will add code to sample the pressure every 10

milliseconds for 5 seconds (500 events)

–	 And to calculate a running average that is displayed on the
PressureAvgView1 display

•	 It doesn�t start the timer until the first non-zero
pressure reading arrives, with value > 10

•	 Each SensorChangeEvent sets the current
pressure value (pressure) and calls for a repaint of
the display

•	 Each ActionEvent from the timer updates the
average pressure and also calls for a repaint

3

PressureAvgView1 Sample

© Oracle. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

PressureAvgView1

ppublic class PressureAvgView1 extends JPanel {

private PressureController1 c; // Reference to controller (MVC)

public PressureAvgView1(PressureController1 pac) {

c= pac;

setBackground(Color.BLUE);

setPreferredSize(new Dimension(400,400));

}

public void paintComponent(Graphics g) {

super.paintComponent(g);

Graphics2D g2= (Graphics2D) g;

double x= 150; // 150 pixels from upper left corner

double height= ((double) c.getPressure()/1000.0) * 300;

double width= 10; // width of rectangle, x direction

double y= 300 - height; // top of rectangle, y direction

Rectangle2D.Double rect= new Rectangle2D.Double(x,y,width,height);

g2.setPaint(Color.red);

g2.fill(rect);

g2.setPaint(Color.white);

g2.drawString("Average pressure= "+c.getAveragePressure(),70,350);

} }

4

http://ocw.mit.edu/fairuse

 

 

 

 
 

 
 

 

 
 

 
 
 

 

 
 

 
 

 

 

Exercise 1a

•	 Download PressureAvgController1, and read it

–	 It��s the solution (without LED) from the last lecture
•	 In PressureAvgController1, make the following

changes:
–	 Class declaration: implements ActionListener (for Timer)
–	 Data members: Add:

•	 int count: number of events processed. You will quit after 500 events.
•	 long pressureSum. Initialize at 0, increment at each sensor reading.

Double might be more convenient, but we often use ints with sensors
•	 Timer timer

–	 Constructor:
• Create new Timer: events every 10 milliseconds, this as listener

–	 Write getAvgPressure() method
•	 Use pressureSum and count.
•	 This will be called by PressureAvgView1

•	 Compile but don�t run this.

Exercise 1b

•	 In PressureAvgController1:
–	 In sensorChanged() method:

•	 if sensor value > 10, start the timer: timer.start()
•	 (Extra calls to timer.start() have no effect. Or check

timer.isRunning())
–	 In closeIntfcKit() method: replace ��closing.� with

printing the average pressure to console. Use
getAvgPressure()

•	 Compile but don�t run it yet.

5

 
 

 
 
 
 

 

 
 

 
 

 
 

 

 
 

 

 
 

Exercise 1c

•	 In PressureAvgController1:
–	 Write actionPerformed() method to handle timer events

• Increment count
• Increment pressureSum
• Repaint view
• Call closeIntfcKit() when count = 500

•	 Compile and run this.

Exercise 2: Two sensors

•	 Place rotation sensor on analog input 2
•	 Download:

–	 VehicleController, VehicleModel, VehicleView
•	 Controller manages force and rotation sensor

events to drive a simple vehicle. We��ll complete it.
–	 Rotation sensor controls steering
–	 Pressure sensor controls velocity

•	 View shows vehicle direction, speed, path. It�s
complete.
–	 Vehicle displayed as icon using Path2D
–	 Must stay within display boundaries of view

•	 Model computes changes in speed, direction from
sensor inputs. We will complete this.
–	 Vehicle must be able to stop
–	 Vehicle can�t turn if it�s not moving

6

VehicleController

iimport com.phidgets.*;

import com.phidgets.event.*;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class VehicleController extends JFrame implements

ActionListener {

private InterfaceKitPhidget interfaceKit;

private VehicleView view;

private VehicleModel model;

private int pressure= 0;

private int pressureIndex= 1; // Sensor on analog 1

private int rotation= 0;

private int rotationIndex= 2; // Sensor on analog 2

private Timer tick; // Timer to update GUI

public static final int WIDTH= 800; // Size of view, model

public static final int HEIGHT= 800;

Exercise 2a: VehicleController, p.2

public static void main(String[] args) {

VehicleController vc = new VehicleController();

vc.pack();

vc.setVisible(true);

vc.openIntfcKit();

}

public VehicleController() {

model= new VehicleModel(this, WIDTH, HEIGHT);

view = new VehicleView(model, WIDTH, HEIGHT);

Container c= getContentPane();

c.add(view, BorderLayout.CENTER);

addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent we) {

closeIntfcKit();

}

});

 // Exercise: Create Timer with events every 0.05 seconds

// using VehicleController as listener, and start it

} // Compile it but don�t run it

7

Exercise 2b: VehicleController, p.3

private void openIntfcKit() {

try {

interfaceKit = new InterfaceKitPhidget();

interfaceKit.addErrorListener(new ErrorListener() {

public void error(ErrorEvent ee) {

System.out.println("Error event for " + ee); }

});

interfaceKit.addSensorChangeListener(new SensorChangeListener(){

public void sensorChanged(SensorChangeEvent se) {

 // Exercise: Complete this method. Compile but don�t run.

// If index is pressure sensor, get its value and set

// pressure to the value.

// If index is rotation sensor, get value and set rotation

// to the value.

});

interfaceKit.openAny();

interfaceKit.waitForAttachment();

interfaceKit.setRatiometric(true);

while (!interfaceKit.getRatiometric());

} catch (PhidgetException pe) { System.err.println(pe); } }

Exercise 2c: VehicleController, p.4

public int getPressure() { return pressure; }

public int getRotation() { return rotation; }

public void actionPerformed(ActionEvent e) {

// Exercise: Complete this method for when Timer event

// occurs: (Compile but don�t run.)

// Update the model and repaint the view

}

private void closeIntfcKit() {

System.out.println("Closing...");

try {

interfaceKit.close(); }

catch (PhidgetException pe) {

System.err.println(pe); }

interfaceKit = null;

System.exit(0);

}

}

8

 

 

 

 

Using Path2D

•	 We will use Path2D to draw the vehicle.
•	 We use Path2D.Double to draw arbitrary paths

or shapes
•	 To create a Path2D object: new Path2D.Double()
•	 Then define the Path2D object by adding path

components that can be a Shape, Line, or curve:
void lineTo(double x, double y);
void moveTo(double x, double y);
// Append ellipses, rectangles, etc:
void append(Shape s, boolean connect);
void quadTo(double x1, double y1,

double x2, double y2) ;

void closePath();

VehicleView, p.1

iimport javax.swing.JPanel;

import java.awt.*;

import java.awt.geom.*;

public class VehicleView extends JPanel {

private Path2D.Double vehicle;

private VehicleModel model;

public VehicleView(VehicleModel m, int w, int h) {

model= m;

setPreferredSize(new Dimension(w, h));

vehicle= new Path2D.Double(); // Vehicle icon

vehicle.moveTo(-10, 0);

vehicle.lineTo(10, 0);

vehicle.lineTo(5, -5);

vehicle.moveTo(10, 0);

vehicle.lineTo(5, 5);

}

9

VehicleView, p.2

public voi d paintComponent(Graphics g) {

super. paintComponent(g);

Graphi cs2D g2= (Graphics2D) g;

g2.set Paint(Color.blue);

g2.set Stroke(new BasicStroke(2));

// No explicit AffineTransform. Use Graphics2D methods

g2.translate(model.getVehicleX(), model.getVehicleY());

g2.rotate(model.getVehicleDir());

g2.draw(vehicle);

}

}

VehicleModel, p.1

public class VehicleModel { // VehicleModel1 in solution

private int width; // 800

private int height; // 800

private double vehicleX;

private double vehicleY;

private double vehicleDir; // Radians

private double speed= 0;

private double speedF= 0.0005; // Scale factor

private int speedThreshold= 10; // Min sensor value

private double directionF= 0.0005; // Scale factor

private int directionCtr= 500; // Center of rotate

private VehicleController sensors; // sensor (0-1000)

public VehicleModel(VehicleController vs, int w, int h) {

sensors= vs;

width= w;

height= h;

vehicleX= width/2; // Place in center of view

vehicleY= height/2; // which is also center of

vehicleDir= 0; // area vehicle can drive in

} // And getVehicleX(), getVehicleY(), getVehicleDir()

10

 

 
 
 

 
 

 
 
 
 

 

Exercise 2d: VehicleModel, p.2

•	 Complete updateModel() in VehicleModel, which

is called when an event occurs:
ppublic void updateModel() {

int p= sensors.getPressure(); // 0-1000

int r= sensors.getRotation(); // 0-1000, 0-300 degrees

// Complete this method.

}

–	 Check if pressure sensor value above speedThreshold
–	 If so, set speed= pressure times scale factor (speedF)
–	 Set vehicle direction= f(rotation sensor) * speed *scale factor

• This is the trickiest part. Experiment, or use:
• vehicleDirection -= (r - directionCtr) * speed * directionF

–	 Increment vehicle x position by speed * cos(direction)
–	 Increment vehicle y position by speed * sin(direction)
–	 Make sure vehicle x and y are between 0 and width or height
–	 If pressure sensor less than speedThreshold, set speed = 0

•	 Compile and run it.

11

MIT OpenCourseWare
http://ocw.mit.edu

1.00 / 1.001 / 1.002 Introduction to Computers and Engineering Problem Solving
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

