
2/11/12

1

1.00 Lecture 32

Integration

Reading for next time: Numerical Recipes 347-368

Packaging Functions in Objects

•  Consider writing a method that evaluates,
integrates or finds the roots of a function:
–  Evaluate: find f(x) when x=c
–  Root: find x such that f(x)= 0 on some interval [a, b]

•  A general method that does this should have f(x)
as an argument
–  Can t pass functions in Java (unlike C++)
–  Include the function (method) in an object instead

•  Then pass the object reference to the evaluation,
integration or root finding method as an argument

–  Define an interface that describes the object that will be
passed to the numerical method
•  It must have a method, typically called f, that returns the

value of the function f at a point defined by the arguments

2/11/12

2

Exercise: Passing Functions
•  Write an interface MathFunction2 (New->Interface)
 public interface MathFunction2 {

 public double f(double x1, double x2); }

•  Write a class Cubic that implements the interface for the
function 5x 2 3 1 + 2x2 (New->Class)
 public class Cubic implements MathFunction2 { … }

•  Write a class Evaluate that contains a method eval() that
evaluates functions of two variables: (New->Class)
–  eval() takes a MathFunction2 object and two doubles d1 and d2

as arguments
–  It returns true if f(d1,d2) >= 0 and false otherwise
public class Evaluate {

 public static boolean eval(MathFunction2 func,
 double d1, double

d2){…}

•  Write a main() method, in class Evaluate that:
–  Invokes eval(), passing a Cubic object and two doubles x1=2 and

x2=-3, and prints the boolean value returned
•  No need for a constructor in Cubic (or Evaluate) classes

–  Java will write a default (no argument) constructor automatically
• If you have time, create class Quadratic with f(x)=x1

2-x2
2+2x1x2

Elementary Integration Methods

A= f(xright)*h

Rectangular rule

Trapezoidal rule

Simpson s method

h

A= (f(xleft)+f(xright))*h/2

f(x)

A= (f(xl)+4f(xm)+f(xr))*h/6

x xxl r m

2/11/12

3

Elementary Integration Methods
ppublic class Quartic implements MathFunction {

 public double f(double x) { // f in MathFunction

 return x*x*x*x +2; } }

public class Integration {

 public static double rect(MathFunction func,

 double a, double b, int n) {

 double h= (b-a)/n;

 double answer=0.0;

 for (int i=0; i < n; i++)

 answer += func.f(a+i*h); // Left edge

 return h*answer; }

 public static double trap(MathFunction func,

 double a, double b, int n) {

 double h= (b-a)/n;

 double answer= func.f(a)/2.0;

 for (int i=1; i <= n; i++)

 answer += func.f(a+i*h); // Common edge

 answer -= func.f(b)/2.0;

 return h*answer; }

Elementary Integration Methods, p.2
lic static double simp(MathFunction func,

 double a, double b, int n) {

 pub

 // Each panel has area (h/6)*(f(x) + 4f(x+h/2) + f(x+h))

 double h= (b-a)/n;

 double answer= func.f(a);

 for (int i=1; i <= n; i++)

 answer += 4.0*func.f(a+i*h-h/2.0)+ 2.0*func.f(a+i*h);

 answer -= func.f(b);

 return h*answer/6.0; }

 public static void main(String[] args) {

 double r= Integration.rect(new Quartic(), 0.0, 8.0, 200);

 System.out.println("Rectangle: " + r);

 double t= Integration.trap(new Quartic(), 0.0, 8.0, 200);

 System.out.println("Trapezoid: " + t);

 double s= Integration.simp(new Quartic(), 0.0, 8.0, 100);

 System.out.println("Simpson: " + s);

 }

/ Problems: no accuracy estimate, inefficient, only closed int

}

/

2/11/12

4

Quick Exercise

•  Download and run Integration
–  The function is f(x)= x4 + 2
–  The integral is 8

∫ (x4 + 2)dx (/ 5)
8

= x5 + 2x
0

0

–  What value do rectangular, trapezoidal and
Simpson give for the function provided?

–  Compute the correct value via calculus
–  Which is the most accurate?

Trapezoid Rule

)''()5.05.0()(3
21

2

1

fhOffhdxxf
x

x

++=∫

Individual trapezoid approximation:

Use this N-1 times for (x1, x2), (x2, x3), �(xN-1, xN) and
add the results:

)''()5.0...5.0()(3
121

1

fNhOffffhdxxf NN

x

x

N

+++++= −∫

h

f(x)

2/11/12

5

Better Trapezoid Rule

1 9

N=1, requires two function evaluations

Better Trapezoid Rule

1 95

N=2, requires only one more function evaluation

2/11/12

6

Better Trapezoid Rule

1 95

N=4, requires only two more function evaluations

3 7

Better Trapezoid Rule

1 95

N=8, requires only 4 more function evaluations

3 72 4 6 8

2/11/12

7

Using Trapezoidal Rule
•  Keep cutting intervals in half until desired

accuracy met
–  Estimate accuracy by change from previous estimate
–  Each halving requires only half the work because

past work is retained
•  By using a quadratic interpolation (Simpson s

rule) to function values instead of linear
(trapezoidal rule), we get better error behavior
–  By good fortune, errors cancel well with quadratic

approximation used in Simpson s rule
–  Computation same as trapezoid, but uses different

weighting for function values in sum

Extended Trapezoid Method
ppublic class Trapezoid { // NumRec p. 137

 public static double trapzd(MathFunction func, double a,

 double b, int n) {

 if (n==1) {

 s= 0.5*(b-a)*(func.f(a)+func.f(b));

 return s; }

 else {

 int it= 1; // Addl interior points

 for (int j= 0; j < n-2; j++)

 it *= 2; // Subdivisions

 double tnm= it; // Double value of it

 double delta= (b-a)/tnm; // Spacing of points

 double x= a+0.5*delta; // Pt to evaluate f(x)

 double sum= 0.0; // Contrib of new pts x

 for (int j= 0; j < it; j++) {

 sum += func.f(x);

 x+= delta; }

 s= 0.5*(s+(b-a)*sum/tnm); // Value of integral

 return s; } }

 private static double s; } // Current value of integral

 // Fake data member

2/11/12

8

Extended Simpson Method

Approximate function with quadratic, not linear form
(There is also a Simpson method using cubic form)

Extended Simpson Method
ppublic class Simpson { // NumRec p. 139

 public static double qsimp(MathFunction func, double a,

 double b) {

 double ost= -1.0E30;

 double os= -1E30;

 for (int j=0; j < JMAX; j++) {

 double st= Trapezoid.trapzd(func, a, b, j+1);

 s= (4.0*st - ost)/3.0; // See NumRec eq. 4.2.4

 if (j > 4) // Avoid spurious early convergence

 if (Math.abs(s-os) < EPSILON*Math.abs(os) ||

 (s==0.0 && os==0.0)) {

 System.out.println("Simpson iter: " + j);

 return s; }

 os= s;

 ost= st; }

 System.out.println("Too many steps in qsimp");

 return ERR_VAL; }

 private static double s; // Value of integral

 public static final double EPSILON= 1.0E-15;

 public static final int JMAX= 50;

 public static final double ERR_VAL= -1E10; }

2/11/12

9

Using Extended Simpson
 public static void main(String[] args) {

 // Using extended Simpson method

 System.out.println("Simpson use");

 ans= qsimp(new Quartic(), 0.0, 8.0);

 System.out.println("Integral: " + ans);

 }

} // End Simpson class

public class Quartic implements MathFunction { // Same as before

 public double f(double x) {

 return x*x*x*x + 2;

 }

}

public interface MathFunction { // Same as before

 public double f(double x);

}

Quick Demo
•  Download Simpson and Trapezoid
–  Run them with different values of m (trapezoid)

and EPSILON (Simpson), which governs the
size of the interval and number of iterations

–  Trapezoid:
•  Examine from m= 5 to m= 20 iterations
•  Number of intervals is 2m+1

•  220 is about a million
–  Simpson:

•  Experiment with EPSILON
–  Notice that Simpson is much more accurate

with many times fewer iterations

2/11/12

10

Romberg Integration
•  Generalization of Simpson (NumRec p. 140)
–  Based on numerical analysis to remove more

terms in error series associated with the
numerical integral
•  Uses trapezoid as building block as does Simpson

–  Romberg is adequate for smooth (analytic)
integrands, over intervals with no singularities,
where endpoints are not singular

–  Romberg is much faster than Simpson or the
elementary routines. For a sample integral:
•  Romberg: 32 iterations
•  Simpson: 256 iterations
•  Trapezoid: 8192 iterations

–  All are instances of Newton-Cotes methods

Improper Integrals
•  Improper integral defined as having

integrable singularity or approaching
infinity at limit of integration
–  Use extended midpoint rule instead of

trapezoid rule to avoid function evaluations at
singularities or infinities
•  Must know where singularities or infinities are

–  Use change of variables: often replace x with
1/t to convert an infinity to a zero
•  Done implicitly in many routines

•  Last improvement: Gaussian quadrature
–  In Simpson, Romberg, etc. the x values are

evenly spaced. By relaxing this, we can get
better efficiency and better accuracy

2/11/12

11

Midpoint Rule

See Numerical Recipes for discussion, code

Multidimensional integration
•  Classical 1-D methods are of historic interest only

–  Rectangular, trapezoid, Simpson s
–  Work well for integrals that are very smooth or can be

computed analytically anyway
•  Extended Simpson s method is only elementary

method of some utility for 1-D integration
•  Multidimensional integration is tough

–  If region of integration and function values are smooth, use
multidimensional Simpson s (also called decomposition)
•  Numerical Recipes chapter 4 has multidimensional Simpson

–  If region of integration is complex but function values are
smooth, use Monte Carlo integration (next exercise)

–  If region is simple but function is irregular, split integration
into regions based on known sites of irregularity

–  If region is complex and function is irregular, or if sites of
function irregularity are unknown, give up

2/11/12

12

Monte Carlo Integration

x

y

f(x,y)

Cross section of jet engine thrust can look like this, for example

z=

Integrate f(x,y) over Circular Area

r

2r

2r

Randomly generate
points in square 4r2 .
Odds that they re in the
circle are πr2 / 4r2, or π/ 4.

This is Monte Carlo
integration, with f(x,y)= 1

If f(x,y) varies slowly, then
evaluate f(x,y) at each
sample point in limits of
Integration, and sum them

This actually finds the
volume of a cylinder

(0,0)

2/11/12

13

Integration over Circular Area
ppublic class MonteCarloIntegration {

 public static double circularIntegral() {

 int nIter= 1000000;

 double sum= 0.0, radius= 0.5;

 for (int i=0; i < nIter; i++) {

 // Math.random() returns double d: 0 <= d < 1

 double x= Math.random() - radius; // Ctr at 0,0

 double y= Math.random() - radius;

 double f= 1.0; // f(x,y)—constant here

 if ((x*x + y*y) < radius*radius) // If in region

 sum += f; // Increment integral sum

 }

 return sum/nIter; // Integral value

 }

 public static void main(String[] args) {

 System.out.println(Result: + circularIntegral());

 System.out.println(Pi: + 4.0*circularIntegral());

} } // Accuracy ~ sqrt(n) with random x,y.

Integration over Circular Area, 2
/// To integrate f(x,y) = exp (x)/(y*y+1) over this area:

public class MonteCarloIntegration2 {

 public static double circularIntegral() {

 // for loop, random x, y same as previous slide

 // …

 if ((x*x + y*y) < radius*radius){ // If in region

 double f= Math.exp(x)/(y*y+1);

 sum += f; // Increment integral sum

 }

 return sum/nIter; // Integral value

 }

 public static void main(String[] args) {

 System.out.println(Result: +circularIntegral());

 }

}

// Numerical integration is used when functions and areas

// of integration are really complex and ugly

2/11/12

14

Exercise
•  Find the shaded volume within circles below:

–  Use circularIntegral() as your starting point
–  Use f(x,y)= 1 to find the areas below using integration
–  Equation of circle is (x-xc)2 + (y-yc)2 = r2

r r

r

(0,0)

r= 0.5 (unit circle)

(Answer is 3π/16, or .589)

MIT OpenCourseWare
http://ocw.mit.edu

1.00 / 1.001 / 1.002 Introduction to Computers and Engineering Problem Solving
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

