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1.00 Lecture 32 

 
Integration 

Reading for next time: Numerical Recipes 347-368 

Packaging Functions in Objects 

•  Consider writing a method that evaluates, 
integrates or finds the roots of a function:  
–  Evaluate: find f(x) when x=c 
–  Root: find x such that f(x)= 0 on some interval [a, b] 

•  A general method that does this should have f(x) 
as an argument 
–  Can t pass functions in Java (unlike C++) 
–  Include the function (method) in an object instead 

•  Then pass the object reference to the evaluation, 
integration or root finding method as an argument 

–  Define an interface that describes the object that will be 
passed to the numerical method 
•  It must have a method, typically called f, that returns the 

value of the function f at a point defined by the arguments 
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Exercise: Passing Functions 
•  Write an interface MathFunction2     (New->Interface) 
     public interface MathFunction2 { 

        public double f(double x1, double x2);  }  

•  Write a class Cubic that implements the interface for the 
function 5x 2 3         1 + 2x2 (New->Class) 
 public class Cubic implements MathFunction2 { … } 

•  Write a class Evaluate that contains a method eval() that 
evaluates functions of two variables:  (New->Class) 
–  eval() takes a MathFunction2 object and two doubles d1 and d2 

as arguments 
–  It returns true if f(d1,d2) >= 0 and false otherwise 
public class Evaluate { 

      public static boolean eval(MathFunction2 func, 
      double d1, double 

d2){…} 

•  Write a main() method, in class Evaluate that: 
–  Invokes eval(), passing a Cubic object and two doubles x1=2 and 

x2=-3, and prints the boolean value returned 
•  No need for a constructor in Cubic (or Evaluate) classes 

–  Java will write a default (no argument) constructor automatically 
• If you have time, create class Quadratic with f(x)=x1

2-x2
2+2x1x2

Elementary Integration Methods 

A= f(xright)*h 

Rectangular rule 

Trapezoidal rule 

Simpson s method 

h 

A= (f(xleft)+f(xright))*h/2 

f(x) 

A= (f(xl)+4f(xm)+f(xr))*h/6 

x xxl r m 
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Elementary Integration Methods 
ppublic class Quartic implements MathFunction { 

    public double f(double x) {  // f in MathFunction 

        return x*x*x*x +2;    }   } 

 

public class Integration { 

    public static double rect(MathFunction func, 

     double a, double b, int n) { 

        double h= (b-a)/n; 

        double answer=0.0; 

        for (int i=0; i < n; i++) 

            answer += func.f(a+i*h);  // Left edge 

        return h*answer;    } 

     

    public static double trap(MathFunction func, 

     double a, double b, int n) { 

        double h= (b-a)/n; 

        double answer= func.f(a)/2.0; 

        for (int i=1; i <= n; i++) 

            answer += func.f(a+i*h);  // Common edge 

        answer -= func.f(b)/2.0; 

 return h*answer;    }        

Elementary Integration Methods, p.2 
lic static double simp(MathFunction func,  

   double a, double b, int n) { 

  pub

 

       // Each panel has area (h/6)*(f(x) + 4f(x+h/2) + f(x+h)) 

       double h= (b-a)/n; 

       double answer= func.f(a); 

       for (int i=1; i <= n; i++) 

           answer += 4.0*func.f(a+i*h-h/2.0)+ 2.0*func.f(a+i*h); 

       answer -= func.f(b); 

       return h*answer/6.0;    } 

        

  public static void main(String[] args) { 

      double r= Integration.rect(new Quartic(), 0.0, 8.0, 200); 

      System.out.println("Rectangle: " + r); 

      double t= Integration.trap(new Quartic(), 0.0, 8.0, 200); 

      System.out.println("Trapezoid: " + t); 

      double s= Integration.simp(new Quartic(), 0.0, 8.0, 100); 

      System.out.println("Simpson: " + s); 

  } 

   

/ Problems: no accuracy estimate, inefficient, only closed int 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

}

/
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Quick Exercise 

•  Download and run Integration 
–  The function is f(x)= x4 + 2 
–  The integral is  8

∫ (x4 + 2)dx ( / 5 )
8

= x5 + 2x
0

0

–  What value do rectangular, trapezoidal and 
Simpson give for the function provided? 

–  Compute the correct value via calculus 
–  Which is the most accurate? 

Trapezoid Rule 

)''()5.05.0()( 3
21

2

1

fhOffhdxxf
x

x

++=∫

Individual trapezoid approximation: 

Use this N-1 times for (x1, x2), (x2, x3), �(xN-1, xN) and 
add the results: 

)''()5.0...5.0()( 3
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f(x) 
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Better Trapezoid Rule 

1 9

N=1, requires two function evaluations 

 

Better Trapezoid Rule 

1 95 

N=2, requires only one more function evaluation 
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Better Trapezoid Rule 

1 95 

N=4, requires only two more function evaluations 

3 7  

Better Trapezoid Rule 

1 95 

N=8, requires only 4 more function evaluations 

3 72 4 6 8   
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Using Trapezoidal Rule 
•  Keep cutting intervals in half until desired 

accuracy met 
–  Estimate accuracy by change from previous estimate 
–  Each halving requires only half the work because 

past work is retained 
•  By using a quadratic interpolation (Simpson s 

rule) to function values instead of linear 
(trapezoidal rule), we get better error behavior 
–  By good fortune, errors cancel well with quadratic 

approximation used in Simpson s rule 
–  Computation same as trapezoid, but uses different 

weighting for function values in sum 

Extended Trapezoid Method 
ppublic class Trapezoid {   // NumRec p. 137 

    public static double trapzd(MathFunction func, double a, 

       double b, int n) { 

        if (n==1) { 

            s= 0.5*(b-a)*(func.f(a)+func.f(b)); 

            return s; } 

        else { 

            int it= 1;   // Addl interior points 

            for (int j= 0; j < n-2; j++) 

                it *= 2;             // Subdivisions 

            double tnm= it;        // Double value of it 

            double delta= (b-a)/tnm; // Spacing of points 

            double x= a+0.5*delta;   // Pt to evaluate f(x) 

            double sum= 0.0;        // Contrib of new pts x 

            for (int j= 0; j < it; j++) { 

                sum += func.f(x); 

                x+= delta; } 

            s= 0.5*(s+(b-a)*sum/tnm); // Value of integral 

            return s;     }    } 

    private static double s;  }    // Current value of integral 

          // Fake data member  
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Extended Simpson Method 

Approximate function with quadratic, not linear form 
(There is also a Simpson method using cubic form) 

Extended Simpson Method 
ppublic class Simpson {   // NumRec p. 139 

    public static double qsimp(MathFunction func, double a, 

      double b) { 

        double ost= -1.0E30; 

        double os= -1E30; 

        for (int j=0; j < JMAX; j++) { 

            double st= Trapezoid.trapzd(func, a, b, j+1); 

            s= (4.0*st - ost)/3.0;      // See NumRec eq. 4.2.4 

            if (j > 4)      // Avoid spurious early convergence 

                if (Math.abs(s-os) < EPSILON*Math.abs(os) || 

     (s==0.0 && os==0.0)) { 

                    System.out.println("Simpson iter: " + j); 

                    return s; } 

            os= s; 

            ost= st;      } 

        System.out.println("Too many steps in qsimp"); 

        return ERR_VAL;    } 

    private static double s;   // Value of integral 

    public static final double EPSILON= 1.0E-15; 

    public static final int JMAX= 50; 

    public static final double ERR_VAL= -1E10;  } 
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Using Extended Simpson 
     public static void main(String[] args) { 

        // Using extended Simpson method        

        System.out.println("Simpson use"); 

        ans= qsimp(new Quartic(), 0.0, 8.0); 

        System.out.println("Integral: " + ans);         

  }    

}   // End Simpson class 

 

 

public class Quartic implements MathFunction {  // Same as before 

    public double f(double x) { 

        return x*x*x*x + 2; 

  } 

}   

 

 

public interface MathFunction {      // Same as before 

 public double f(double x); 

} 

Quick Demo 
•  Download Simpson and Trapezoid 
–  Run them with different values of m (trapezoid) 

and EPSILON (Simpson), which governs the 
size of the interval and number of iterations 

–  Trapezoid: 
•  Examine from m= 5 to m= 20 iterations 
•  Number of intervals is 2m+1 

•  220 is about a million 
–  Simpson: 

•  Experiment with EPSILON 
–  Notice that Simpson is much more accurate 

with many times fewer iterations 
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Romberg Integration 
•  Generalization of Simpson (NumRec p. 140) 
–  Based on numerical analysis to remove more 

terms in error series associated with the 
numerical integral 
•  Uses trapezoid as building block as does Simpson 

–  Romberg is adequate for smooth (analytic) 
integrands, over intervals with no singularities, 
where endpoints are not singular 

–  Romberg is much faster than Simpson or the 
elementary routines.  For a sample integral: 
•  Romberg: 32 iterations 
•  Simpson: 256 iterations 
•  Trapezoid:  8192 iterations 

–  All are instances of Newton-Cotes methods 

Improper Integrals 
•  Improper integral defined as having 

integrable singularity or approaching 
infinity at limit of integration 
–  Use extended midpoint rule instead of 

trapezoid rule to avoid function evaluations at 
singularities or infinities 
•  Must know where singularities or infinities are 

–  Use change of variables: often replace x with 
1/t to convert an infinity to a zero 
•  Done implicitly in many routines 

•  Last improvement: Gaussian quadrature 
–  In Simpson, Romberg, etc. the x values are 

evenly spaced. By relaxing this, we can get 
better efficiency and better accuracy 
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Midpoint Rule 

See Numerical Recipes for discussion, code 

Multidimensional integration 
•  Classical 1-D methods are of historic interest only 

–  Rectangular, trapezoid, Simpson s 
–  Work well for integrals that are very smooth or can be 

computed analytically anyway 
•  Extended Simpson s method is only elementary 

method of some utility for 1-D integration 
•  Multidimensional integration is tough 

–  If region of integration and function values are smooth, use 
multidimensional Simpson s (also called decomposition) 
•  Numerical Recipes chapter 4 has multidimensional Simpson 

–  If region of integration is complex but function values are 
smooth, use Monte Carlo integration (next exercise) 

–  If region is simple but function is irregular, split integration 
into regions based on known sites of irregularity 

–  If region is complex and function is irregular, or if sites of 
function irregularity are unknown, give up 
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Monte Carlo Integration 

x 

y 

f(x,y) 

Cross section of jet engine thrust can look like this, for example 

z=

Integrate f(x,y) over Circular Area 

r 

2r 

2r 

Randomly generate 
points in square 4r2 . 
Odds that they re in the  
circle are πr2 / 4r2, or π/ 4. 
 

This is Monte Carlo 
integration, with f(x,y)= 1 
 
If f(x,y) varies slowly, then 
evaluate f(x,y) at each 
sample point in limits of 
Integration, and sum them 
 
This actually finds the  
volume of a cylinder 

(0,0) 
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Integration over Circular Area 
ppublic class MonteCarloIntegration { 

    public static double circularIntegral() { 

        int nIter= 1000000; 

        double sum= 0.0, radius= 0.5; 

        for (int i=0; i < nIter; i++) { 

            // Math.random() returns double d: 0 <= d < 1 

            double x= Math.random() - radius;  // Ctr at 0,0 

            double y= Math.random() - radius; 

            double f= 1.0;  // f(x,y)—constant here 

            if ((x*x + y*y) < radius*radius) // If in region 

                sum += f;   // Increment integral sum 

        } 

        return sum/nIter;   // Integral value 

    }     

    public static void main(String[] args) { 

  System.out.println( Result: + circularIntegral() ); 

  System.out.println( Pi: + 4.0*circularIntegral() ); 

}   }  // Accuracy ~ sqrt(n) with random x,y. 

Integration over Circular Area, 2 
/// To integrate f(x,y) = exp (x)/(y*y+1) over this area: 

public class MonteCarloIntegration2 { 

    public static double circularIntegral() { 

  // for loop, random x, y same as previous slide 

  // … 

  if ((x*x + y*y) < radius*radius){ // If in region 

         double f= Math.exp(x)/(y*y+1); 

         sum += f;   // Increment integral sum 

        } 

        return sum/nIter;  // Integral value 

    }     

    public static void main(String[] args) { 

        System.out.println( Result:  +circularIntegral() ); 

    }  

} 

// Numerical integration is used when functions and areas 

// of integration are really complex and ugly 
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Exercise 
•  Find the shaded volume within circles below: 

–  Use circularIntegral() as your starting point 
–  Use f(x,y)= 1 to find the areas below using integration 
–  Equation of circle is (x-xc)2 + (y-yc)2 = r2 

r r 

r 

(0,0) 

r= 0.5 (unit circle) 

(Answer is 3π/16, or .589) 
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