Recitation 11

Matrices, Linear Systems, Integration

Outline

- Matrices
- Linear Equations
- Integration

Matrix Representation


```
int[][] a = new int[3][4];
a[0][0] = 1;
a[0][1] = 2;
// ...
b = a[0][3];
c = a[1];
```

No. of Columns: a[0].length No. of Rows: a.length Represent matrices as two dimensional arrays *a is a 1-D array of references to 1-D arrays of data.*

Matrix Representation

- You can create 2-D arrays manually or use Matrix class
- The Matrix class has methods for setting elements, adding, subtracting, and multiplying matrices, and forming an identity matrix.

```
public static void main(...)
{
    int[][] a= new int[3][4];
    a[0][0]= 1;
    a[0][1]= 2;
    ...
    a[2][3]= 12;
    int b= a[0][2];
    int[] c= a[1];
}
```

Matrix Exercise

 Add a method to Matrix to compute the transpose of a matrix

```
public class Matrix {
    private double[][] data;
    public Matrix(int m, int n) {data = new double[m][n];}
    public int getNumRows() {return data.length;}
    public int getNumCols() {return data[0].length;}
    public double getElement(int i, int j) {
        return data[i][j];
    }
    public void setElement(int i, int j, double val) {
        data[i][j] = val;
    }
```

Linear Systems

- Matrices used to represent systems of linear equations
- Assume coefficients a and b are known, x is unknown
- There n unknowns (x_0 to x_{n-1}) and m equations

a ₀₀ x a ₁₀ x	₀ + a ₀₁ x ₀ + a ₁₁ x	(₁ + a ₀₂) (₁ + a ₁₂)	x ₂ + x ₂ +	+ +	a _{0,n-1}) a _{1,n-1})	(_{n-1} (_{n-1}	= b ₀ = b ₁	
a _{m-1,}	_{,0} x ₀ + a _r	_{n-1,1} x ₁ +	• a _{m-1,2})	(₂ + +	a _{m-1,r}	_{n-1} X _{n-1}	= b _{m-}	1
a ₀₀	a ₀₁	a ₀₂	a ₀₃	a _{0,n-1}	\mathbf{x}_0		b ₀	
a ₁₀	a ₁₁	a ₁₂	a ₁₃	a _{1,n-1}	x ₁		b ₁	
a ₂₀	a ₂₁	a ₂₂	a ₂₃	a _{2,n-1}	x ₂	=	b ₂	
a _{m-1,0}	a _{m-1,1}	a _{m-1,2}	a _{m-1,3}	a _{m-1,n-1}	x _{n-1}		b _{m-1}	
(m rows x n cols) (n x 1) = (m x 1)								•
Ax=b								

Linear Systems

Solve using Gaussian Elimination: forward solve, backward solve

Now backward solve: find z from L_3 , y from L_2 , x from L_1

Source: Wikipedia, "Gaussian elimination" License CC BY-SA. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Linear System Exercise

- La Verde's bakes muffins and donuts using flour and sugar.
- Same profit for one muffin and one donut.
- How many donuts, muffins to maximize profit?

	Flour Needed	Sugar Needed
Muffin	100 g	50 g
Donut	75 g	75 g

Ingredient	Supply
Flour	20 kg
Sugar	15 kg

Linear System Exercise

• Model as system of equations:

 $100m + 75d = 20000 \leftarrow flour constraint$ $50m + 75d = 15000 \leftarrow sugar constraint$

- Create the matrices (in the form of Ax=b)
- Use Matrix.setElement() and Matrix.gaussian()

A
$$\mathbf{x} = \mathbf{b}$$

$$\begin{bmatrix} 100 & 75 \\ 50 & 75 \end{bmatrix} * \begin{bmatrix} m \\ d \end{bmatrix} = \begin{bmatrix} 20000 \\ 15000 \end{bmatrix}$$

Integration

- We use objects to represent mathematical functions in Java
- Each function has its own class
- Each class implements MathFunction

```
public interface MathFunction{
    public double f(double x);
}
```

```
public class LinearF implements MathFunction {
    public double f(double x) {
        return 2 * x + 3;
    }
}
```

$$f(x) = 2x + 3$$

Integration

Rectangular Rule

$$A = f(x_R) \, dx$$

 x_L

Trapezoidal Rule $A = \frac{f(x_R) + f(x_L)}{2} dx$

Simpson's Rule $A = \frac{f(x_R) + 4f(x_m) + f(x_L)}{6}dx$

Improved Trapezoidal Rule

Keep cutting intervals in half until desired accuracy is met.

Function evaluations are stored to avoid re-computation.

Integration Exercise

Compute the shaded surface area using Monte Carlo integration with 1,000,000 random points.

Use MonteCarloIntegration.java from lecture as a starting point.

Write a method to find area when r = 1

Problem Set 10

- Find currents and voltages in resistor/battery network
- Build a matrices for resistor values, voltages
- Solve for currents. Use Matrix class from lecture.

1.00 / 1.001 / 1.002 Introduction to Computers and Engineering Problem Solving Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.