Recitation 11

Matrices, Linear Systems, Integration

Outline

- Matrices
- Linear Equations
- Integration

Matrix Representation


```
int[][] a = new int[3][4];
a[0][0] = 1;
a[0][1] = 2;
// ...
b = a[0][3];
c = a[1];
```

No. of Columns: a[0]. length
No. of Rows: a.length

Represent matrices as two dimensional arrays
a is a 1-D array of
references to 1-D arrays of data.

Matrix Representation

- You can create 2-D arrays manually or use Matrix class
- The Matrix class has methods for setting elements, adding, subtracting, and multiplying matrices, and forming an identity matrix.

```
```

public static void main(...)

```
```

public static void main(...)
{
{
int[][] a= new int[3][4];
int[][] a= new int[3][4];
a[0][0]= 1;
a[0][0]= 1;
a[0][1]= 2;
a[0][1]= 2;
a[2][3]= 12;
a[2][3]= 12;
int b= a[0][2];
int b= a[0][2];
int[] c= a[1];
int[] c= a[1];
}

```
}
```

```
    ...
```

```
    ...
```


Matrix Exercise

- Add a method to Matrix to compute the transpose of a matrix

```
public class Matrix {
    private double[][] data;
    public Matrix(int m, int n) {data = new double[m][n];}
    public int getNumRows() {return data.length;}
    public int getNumCols() {return data[0].length;}
    public double getElement(int i, int j) {
        return data[i][j];
    }
    public void setElement(int i, int j, double val) {
        data[i][j] = val;
    }
}
```


Linear Systems

- Matrices used to represent systems of linear equations

$$
\begin{array}{ll}
a_{00} x_{0}+a_{01} x_{1}+a_{02} x_{2}+\ldots+ & a_{0, n-1} x_{n-1}=b_{0} \\
a_{10} x_{0}+a_{11} x_{1}+a_{12} x_{2}+\ldots+ & a_{1, n-1} x_{n-1}=b_{1} \\
\cdots a_{m-1,0} x_{0}+a_{m-1,1} x_{1}+a_{m-1,2} x_{2}+\ldots+a_{m-1, n-1} x_{n-1}=b_{m-1}
\end{array}
$$

- Assume coefficients a and b are known, x is unknown
- There n unknowns (x_{0} to x_{n-1}) and m equations

$$
\left|\begin{array}{lllll}
a_{00} & a_{01} & a_{02} & a_{03} \ldots & a_{0, n-1} \\
a_{10} & a_{11} & a_{12} & a_{13} \ldots & a_{1, n-1} \\
a_{20} & a_{21} & a_{22} & a_{23} \ldots & a_{2, n-1} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
a_{m-1,0} & a_{m-1,1} & a_{m-1,2} & a_{m-1,3, \ldots} & a_{m-1, n-1}
\end{array}\right|\left|\begin{array}{l}
x_{0} \\
x_{1} \\
x_{2} \\
\ldots \\
x_{n-1}
\end{array}\right|=\left|\begin{array}{l}
b_{0} \\
b_{1} \\
b_{2} \\
\ldots \\
b_{m-1}
\end{array}\right|
$$

(m rows x n cols)
$A x=b$

Linear Systems

Solve using Gaussian Elimination: forward solve, backward solve
Problem
Statement

Eliminate x from L_{2}, L_{3}

Eliminate y

$$
\begin{align*}
& \begin{aligned}
2 x+y-z= & 8 \\
-3 x-y+2 z= & -11 \\
-2 x+y+2 z= & -3
\end{aligned} \tag{1}\\
& {\left[\begin{array}{ccc|c}
2 & 1 & -1 & 8 \\
-3 & -1 & 2 & -11 \\
-2 & 1 & 2 & -3
\end{array}\right]} \\
& 2 x+y-z=8 \\
& \frac{1}{2} y+\frac{1}{2} z=1 \\
& 2 y+z=5 \\
& 2 x+y-{ }_{z=8}^{\downarrow} \\
& \frac{1}{2} y+\frac{1}{2} z=1 \\
& -z=1 \\
& {\left[\begin{array}{ccc|c}
1 & \frac{1}{3} & \frac{-2}{3} & \frac{11}{3} \\
0 & 1 & \frac{2}{5} & \frac{13}{5} \\
0 & 0 & 1 & -1
\end{array}\right]}
\end{align*}
$$

Now backward solve: find z from L_{3}, y from L_{2}, x from L_{1}

Linear System Exercise

- La Verde's bakes muffins and donuts using flour and sugar.
- Same profit for one muffin and one donut.
- How many donuts, muffins to maximize profit?

	Flour Needed	Sugar Needed
Muffin	100 g	50 g
Donut	75 g	75 g

Ingredient	Supply
Flour	20 kg
Sugar	15 kg

Linear System Exercise

- Model as system of equations:

$$
\begin{aligned}
& 100 m+75 d=20000 \leftarrow \text { flour constraint } \\
& 50 m+75 d=15000 \leftarrow \text { sugar constraint }
\end{aligned}
$$

- Create the matrices (in the form of $A x=b$)
- Use Matrix.setElement() and Matrix.gaussian()

$$
\begin{gathered}
\mathbf{A} \quad \mathbf{x}= \\
\left\lfloor\begin{array}{cc}
100 & 75 \\
50 & 75
\end{array}\right\rfloor *\left\lfloor\begin{array}{c}
m \\
d
\end{array}\right\rfloor
\end{gathered}=\left\lfloor\begin{array}{c}
20000 \\
15000
\end{array}\right\rfloor
$$

Integration

- We use objects to represent mathematical functions in Java
- Each function has its own class
- Each class implements MathFunction

```
public interface MathFunction{
    public double f(double x);
}
```

```
public class LinearF implements MathFunction {
    public double f(double x) {
        return 2 * x + 3;
    }
}
```

 \(f(x)=2 x+3\)

Integration

Rectangular Rule
$A=f\left(x_{R}\right) d x$

Trapezoidal Rule
$A=\frac{f\left(x_{R}\right)+f\left(x_{L}\right)}{2} d x$

Simpson's Rule
$A=\frac{f\left(x_{R}\right)+4 f\left(x_{m}\right)+f\left(x_{L}\right)}{6} d x$

Improved Trapezoidal Rule

Keep cutting intervals in half until desired accuracy is met.
Function evaluations are stored to avoid re-computation.

Integration Exercise

Compute the shaded surface area using Monte Carlo integration with 1,000,000 random points.

Use MonteCarloIntegration.java from lecture as a starting point.

Integration Exercise

Bounding Area $=2 r *(4 r-a)$
(x, y) is in left circle if $\quad(x+r-a / 2)^{2}+y^{2}<1$
(x, y) is in right circle if $(x-1+a / 2)^{2}+y^{2}<1$
Write a method to find area when $r=1$

Problem Set 10

- Find currents and voltages in resistor/battery network
- Build a matrices for resistor values, voltages
- Solve for currents. Use Matrix class from lecture.

MIT OpenCourseWare
pttp://ocw.mit.edu
1.00 / 1.001 / 1.002 Introduction to Computers and Engineering Problem Solving Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

