1.010 Uncertainty in Engineering Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

1.010 – Final Exam

(3 hours – open books and notes)

Problem 1 (10 Points)

Christmas lights sold at Wall-Mart come in sets of 4 bulbs of different colors connected in two alternative configurations as shown below:

Configuration 1

Configuration 2

If both configurations cost the same, which configuration would you buy for a lower probability of failure (dark Christmas tree). Assume that each light bulb fails with probability 0.03 and bulbs fail independently.

Problem 2 (10 Points)

A computer can generate random variables U with uniform distribution in the interval [0, 1]. Suppose that you generate 10 such variables, U_1 , U_2 , ..., U_{10} . Let N be the number of variables U_i with value in the interval [0.4, 0.5]. Find:

- (a) The probability that N = 0.
- (b) The probability mass function of N.
- (c) The mean value and variance of N.

Problem 3 (10 Points)

Suppose that the interarrival times T of busses has triangular distribution as shown below:

If it has been 10 minutes since the last bus left, find the probability that a bus will arrive:

- (a) Within the next 5 minutes.
- (b) Within the next 10 minutes.

Problem 4 (15 Points)

Days may be sunny $(I_1 = 1)$ or cloudy $(I_1 = 0)$, and either dry $(I_2 = 1)$ or humid $(I_2 = 0)$. Suppose that 80% of the days are sunny and of these, 80% are dry. Of the cloudy days, 50% are dry. Find:

- (a) The joint PMF of I_1 and I_2 .
- (b) The marginal PMF of I_2 .
- (c) The mean value and variance of I_1 and I_2 .
- (d) The covariance between I_1 and I_2 .

Problem 5 (10 Points)

The deflection of a column, δ (in mm) depends on the applied load L (in tons) as $\delta = L^{1.5}$. This function is plotted in the figure below.

Suppose that L has exponential distribution with probability density function:

$$f_L(\ell) = \begin{cases} e^{-\ell}, & \ell \ge 0\\ 0, & \ell < 0 \end{cases}$$

Find:

- (a) The probability density function of δ .
- (b) The probability that δ exceeds 3 mm.

Problem 6 (10 Points)

At a given location, the mean daily temperature in December (in degrees Celsius) is 10° , with a standard deviation of 5° . The correlation coefficient between temperatures in day *i* and i + j is $\rho_{i,i+j} = 0.8^{|j|}$. Find the mean value and variance of the average temperature in a three day period.

Problem 7 (10 Points)

A coin you found on a beach looks old. A friend, who is an antique dealer, says that it is probably 150 years old \pm 40 years (meaning that the mean value of the age is 150 years and the standard deviation is 40 years). You decide to consult a coin expert who says that the coin may actually be 120 years old \pm 20 years (consider this as a 'noisy' observation). How would you combine the two estimates to find the most likely age an its uncertainty?

[Hint: You could view 150 ± 40 years as your own uncertainty prior to consulting the coin expert, and the expert assessment of 120 years as a 'noisy measurement' of the true age, with an error standard deviation of 20 years. Notice that in this case, the coin expert acts like an imperfect measuring device.]

Problem 8 (10 Points)

The condition for failure of a column is given by D + L > R, where *D* is the dead load, *L* is the live load, and *R* is the resistance, all expressed in the same units.

Suppose that D, L and R are independent normally distributed variables with the following distributions:

$$D \sim N(100, 25^2)$$
, $L \sim N(150, 50^2)$ and $R \sim N(300, 20^2)$

Find the probability of failure of the column.

Problem 9 (15 Points)

Hurricanes occur according to a Poisson Point Process with unknown parameter λ . Given that 5 hurricanes occurred during a two-month period, estimate λ by:

- (a) The Method of Moments
- (b) The Method of Maximum Likelihood