MIT OpenCourseWare
http://ocw.mit.edu

1.010 Uncertainty in Engineering

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

1.010 - Final Exam
 (3 hours - open books and notes)

Problem 1 (10 Points)

Christmas lights sold at Wall-Mart come in sets of 4 bulbs of different colors connected in two alternative configurations as shown below:

Configuration 1

Configuration 2

If both configurations cost the same, which configuration would you buy for a lower probability of failure (dark Christmas tree). Assume that each light bulb fails with probability 0.03 and bulbs fail independently.

Problem 2 (10 Points)

A computer can generate random variables U with uniform distribution in the interval $[0,1]$. Suppose that you generate 10 such variables, $U_{1}, U_{2}, \ldots, U_{10}$. Let N be the number of variables U_{i} with value in the interval [0.4, 0.5]. Find:
(a) The probability that $\mathrm{N}=0$.
(b) The probability mass function of N .
(c) The mean value and variance of N .

Problem 3 (10 Points)

Suppose that the interarrival times T of busses has triangular distribution as shown below:

If it has been 10 minutes since the last bus left, find the probability that a bus will arrive:
(a) Within the next 5 minutes.
(b) Within the next 10 minutes.

Problem 4 (15 Points)

Days may be sunny ($I_{1}=1$) or cloudy ($I_{1}=0$), and either dry ($I_{2}=1$) or humid ($I_{2}=0$). Suppose that 80% of the days are sunny and of these, 80% are dry. Of the cloudy days, 50% are dry. Find:
(a) The joint PMF of I_{1} and I_{2}.
(b) The marginal PMF of I_{2}.
(c) The mean value and variance of I_{1} and I_{2}.
(d) The covariance between I_{1} and I_{2}.

Problem 5 (10 Points)

The deflection of a column, δ (in mm) depends on the applied load L (in tons) as $\delta=\mathrm{L}^{1.5}$. This function is plotted in the figure below.

Suppose that L has exponential distribution with probability density function:

$$
f_{L}(\ell)= \begin{cases}e^{-\ell}, & \ell \geq 0 \\ 0, & \ell<0\end{cases}
$$

Find:
(a) The probability density function of δ.
(b) The probability that δ exceeds 3 mm .

Problem 6 (10 Points)

At a given location, the mean daily temperature in December (in degrees Celsius) is 10°, with a standard deviation of 5°. The correlation coefficient between temperatures in day i and $i+j$ is $\rho_{i, i+j}=0.8^{|j|}$. Find the mean value and variance of the average temperature in a three day period.

Problem 7 (10 Points)

A coin you found on a beach looks old. A friend, who is an antique dealer, says that it is probably 150 years old ± 40 years (meaning that the mean value of the age is 150 years and the standard deviation is 40 years). You decide to consult a coin expert who says that the coin may actually be 120 years old ± 20 years (consider this as a 'noisy' observation). How would you combine the two estimates to find the most likely age an its uncertainty?
[Hint: You could view 150 ± 40 years as your own uncertainty prior to consulting the coin expert, and the expert assessment of 120 years as a 'noisy measurement' of the true age, with an error standard deviation of 20 years. Notice that in this case, the coin expert acts like an imperfect measuring device.]

Problem 8 (10 Points)

The condition for failure of a column is given by $D+L>R$, where D is the dead load, L is the live load, and R is the resistance, all expressed in the same units.

Suppose that D, L and R are independent normally distributed variables with the following distributions:

$$
D \sim N\left(100,25^{2}\right), \quad L \sim N\left(150,50^{2}\right) \text { and } R \sim N\left(300,20^{2}\right)
$$

Find the probability of failure of the column.

Problem 9 (15 Points)

Hurricanes occur according to a Poisson Point Process with unknown parameter λ. Given that 5 hurricanes occurred during a two-month period, estimate λ by:
(a) The Method of Moments
(b) The Method of Maximum Likelihood

