MIT OpenCourseWare
http://ocw.mit.edu

1.010 Uncertainty in Engineering

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

1.010 - Mini-Quiz \#2

(45 min - open books and notes)

Problem 1 (40 Points)

A community of bacteria initially includes 1000 individuals. Given favorable conditions (light, temperature, nutrients), the community doubles in size during a unit time period, for example one day. If conditions are unfavorable, the community downsizes by a factor of 2 .

Suppose that favorable conditions occur with probability 0.6 , and unfavorable conditions with probability 0.4 , and that favorable/unfavorable conditions are independent in different time periods (days). Find the probability mass function of the number of individuals after 3 time periods.

Problem 2 (20 Points)

At a given site, flood-producing storms occur infrequently. Considering the three conditions under which a point process is Poisson, state reasons for or against modeling the storm arrival times as a Poisson point process.

Problem 3 (40 Points)

The lifetime T of electric bulbs (e.g. the number of hours in operation before they fail) has an exponential distribution with cumulative distribution function:
$F_{T}(t)=1-e^{-\left(\frac{1}{1000}\right) t}$ for $t \geq 0$, with t in hours.
Suppose you have used a bulb for 500 hours without failure. Find the probability that the bulb will last at least 500 more hours.

Hint: Use $\mathrm{P}[\mathrm{A} \mid \mathrm{B}]=\mathrm{P}[\mathrm{A} \cap \mathrm{B}] / \mathrm{P}[\mathrm{B}]$, with appropriately defined events A and B .

