Lecture 13, 14

Population Ecology

1.018J

2009

The next three lectures

- Growth under unlimited conditions
- Resource limited growth
- ✤ Age- structured populations "life tables"
- Human Population Growth

How do you measure the size of a population?

UNIFORM DISTRIBUTION

RANDOM DISTRIBUTION

quadrat size has to be very large for clumped distrubutions

Mark and recapture method

Question: what is the population size, N?

Step 1: Capture and mark M individuals

N (number in population) = S x M/R

i.e.

N = number in second sampling X <u>originally marked</u> recovered marked

So how do we model population growth?

Growth Rate Examples

Organism	r (day ⁻¹)	Doubling Time
Bacteria	58.7	17 min
Beetle	0.101	6.9 days
Rat	0.0148	46.8 days
Cow	0.001	1.9 years
Birch Tree	0.00075	25 years

MIT OpenCourseWare http://ocw.mit.edu

1.018J / 7.30J Ecology I: The Earth Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.