Lecture 13, 14

Population Ecology

1.018J

2009

The next three lectures

* Growth under unlimited conditions
* Resource limited growth
* Age- structured populations - "life tables"
* Human Population Growth

How do you measure the size of a population?

QUADRATS

$$
\begin{array}{|lllllllll|}
\hline \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet & & \bullet & \bullet & \bullet \\
\bullet & \bullet \\
\bullet & \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet \\
\bullet & \bullet \\
\bullet & \bullet \\
\hline
\end{array}
$$

UNIFORM DISTRIBUTION

0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

RANDOM DISTRIBUTION

$$
\left.\begin{array}{|cccccccccc}
\hline & 0 & & 0 & & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & & 0 & 0 & 0 & & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & & 0 & & 0 & 0 \\
0 & & & 0 & & 0 & 0 & & 0 & \\
0 & 0 & & & 0 & & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & & 0 & 0 & & & \\
0 & & 0 & 0 & 0 & & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & & 0 & 0 & 0 & 0
\end{array} \right\rvert\,
$$

CLUMPS

quadrat size has to be very large for clumped distrubutions

Step 2: Release and wait

Step 3:
Capture S individuals in second sampling and count \# that are marked (R)

So....

N (number in population) $=\mathrm{S} x \mathrm{M} / \mathrm{R}$

i.e.
$N=$ number in second sampling $X \quad \begin{aligned} & \text { originally marked } \\ & \text { recovered marked }\end{aligned}$

So how do we model population growth?

Growth Rate Examples

Organism	$r\left(\right.$ day $\left.^{-1}\right)$	Doubling Time
Bacteria	58.7	17 min
Beetle	0.101	6.9 days
Rat	0.0148	46.8 days
Cow	0.001	1.9 years
Birch Tree	0.00075	25 years

MIT OpenCourseWare
http://ocw.mit.edu

1.018J / 7.30J Ecology I: The Earth

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

