# **Population Growth in Chemostats – Lecture Notes**

Chisholm

Steady State, resource-limited growth

Jaques Monod (1950s)

Wanted to look at the effects of a limited nutrient on the growth rate of bacteria

Noticed . . .



Hypothesized . . .



Needed system with constant low supply of nutrients

#### 1.018 – 7.30J

## **Chemostat Theory**

System in which a fresh supply of nutrients is fed to a culture of constant volume at a fixed rate, and the contents of the culture are withdrawn at the same rate.



| Y = | /ield Coefficient = 1/Q |
|-----|-------------------------|
|     |                         |

Dilution Rate D = f/V

Residence Time = 1/D

One limiting Nutrient in

| h | n r |  |
|---|-----|--|

hr<sup>-1</sup>

### Analysis of a Chemostat

Change in Cell Concentration = Growth – Washout "Births" – "Deaths"

 $\frac{dN}{dt} = rN - DN$  Mass Balance

in steady-state ...

$$\frac{dN}{dt} = 0$$
 and  $r = D$  [hr<sup>-1</sup>]

$$\frac{dS}{dt} = DS_i - DS - rQN$$

in steady-state . . .

$$\frac{dS}{dt} = 0$$
 and  $N = \frac{S_i - S}{Q}$ 

and, by hypothesis and observation:

$$r = \frac{r_{\max}S}{K_s + S}$$

#### 1.018 – 7.30J

Remember . . .

We have control over D and S<sub>i</sub>.

Given (for steady-state assumption):

$$r = D$$
$$N = \frac{S_i - S}{Q}$$
$$r = \frac{r_{\text{max}}S}{K_s + S}$$

What happens when we change D?

What happens when we change S<sub>i</sub>? (assuming a constant Q) (knowing that D is fixed) (knowing S is fixed for a given *r*)



Question:

What will the output of cells per unit time look like as a function of D for a given  $S_i$ ?

Why does a chemostat always reach a steady-state?

If *r* < D

Ν

Cells will be washed out and  $N \downarrow S \uparrow$ ,  $r \uparrow$ , until r = D

If r > D

Cells will get too dense and  $N \uparrow$ ,  $S \downarrow$ ,  $r \downarrow$  until r = D

Think about it carefully . . .

1.018J / 7.30J Ecology I: The Earth Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.