MIT OpenCourseWare
http://ocw.mit.edu

1.020 Ecology II: Engineering for Sustainability

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Civil and Environmental Engineering

1.020 Ecology II: Engineering for Sustainability

Practice Questions and Solutions for Exam 2 on May 7, 2008 9:30-11am Exam Review Friday May $2^{\text {nd }}, 2008$ 9-11am, Monday May $5^{\text {th }}, 2008,7-9 p m$

1. Open Systems

a) A stream of $5 \mathrm{m3} / \mathrm{s}$ of cooling water at $15^{\circ} \mathrm{C}$ flows through a power plant and accepts 10 MW of heat before leaving. What is the final temperature of the cooling water if this is happening at steady state? Use the following values: c_{p} of water $=4200 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$; density $=1000 \mathrm{~kg}$ m^{-3}. Assume the water inside the power plant is well mixed.

Solution: Open system energy conservation:

$$
\begin{gathered}
m_{\text {powerplant }} c_{v} \frac{d T_{\text {out }}}{d t}=\dot{m} h_{\text {in }}-\dot{m} h_{\text {out }}+\dot{Q} \\
\frac{d T_{\text {out }}}{d t}=0 ; \quad \begin{array}{l}
\dot{m} h_{\text {in }}=\rho q c_{p} T_{\text {in }} \quad \dot{m} h_{\text {out }}=\rho q c_{p} T_{\text {out }} \\
\rightarrow \quad 0=\rho q c_{p} T_{\text {in }}-\rho q c_{p} T_{\text {out }}+\dot{Q} \\
0=\rho q c_{p}\left(T_{\text {in }}-T_{\text {out }}\right)+\dot{Q}
\end{array}
\end{gathered}
$$

Solving for $T_{\text {out, }}, T_{\text {out }}=T_{\text {in }}+\frac{\dot{Q}}{\rho q c_{p}}=19.8^{\circ} \mathrm{C}$.
b) A room initially at 20 degrees C has constant ventilation from an outside breeze that enters and leaves on opposite sides of the room. The walls and windows are good insulators of conduction and convection. The walls do not transmit the incoming solar radiation into the room, however it can emit radiation from the room outward to the outside. The windows initially have their blinds shut, blocking off solar radiation. In the middle of the day, you open the blinds. Assume that the solar radiation received is uniform on all surfaces of the room. Write a differential equation for the unknown temperature of the room T. Calculate the initial rate of increase in the temperature of the room (degrees $\mathrm{C} \mathrm{s}^{-1}$) given the following:

Incoming solar radiation $S_{\mathrm{g}}=1000 \mathrm{~W} \mathrm{~m}^{-2}$
Stefan Boltzmann constant $\sigma=5.7 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}$
Sky temperature $T_{\text {sky }}=-5^{\circ} \mathrm{C}$
Emissivity of sky $\varepsilon_{\text {sky }}=1$

Emissivity of windows $\varepsilon_{\text {window }}=0.8$
Emissivity of walls $\varepsilon_{\text {wall }}=0.05$
Flow of draft through room $=0.3 \mathrm{~m}^{3} \mathrm{~s}^{-1}$
Density of air: $1100 \mathrm{gm} \mathrm{m}^{-3}$
Volume of room: $300 \mathrm{~m}^{3}$
Surface area of room (excluding windows) $=170 \mathrm{~m}^{2}$
Surface area of windows $=15 \mathrm{~m}^{2}$
Outside air temperature: $20^{\circ} \mathrm{C}$
Solution: Open system energy conservation:

$$
m_{\text {room }} c_{v} \frac{d T}{d t}=\dot{m} h_{\text {in }}-\dot{m} h_{\text {out }}+\dot{Q} \quad \text { or } \quad \rho_{\text {air }} V_{\text {room }} c_{v} \frac{d T}{d t}=\dot{m} h_{\text {in }}-\dot{m} h_{\text {out }}+\dot{Q}
$$

Enthalpy terms (energy from flow in/out of system) $\dot{m} h_{\text {in }}=\rho q c_{p} T_{\text {in }} ; \dot{m} h_{\text {out }}=\rho q c_{p} T_{\text {out }}$
$\dot{Q}=$ radiative heat terms (J / s)
$=S_{g} A_{\text {windows }}+\left(A_{\text {window }}+A_{\text {wall }}\right) \sigma \varepsilon_{\text {sky }} T_{\text {sky }}^{4}-A_{\text {window }} \sigma \varepsilon_{\text {window }} T^{4}-A_{\text {wall }} \sigma \varepsilon_{\text {wall }} T^{4}$
Therefore the differential equation for T is
$\frac{d T}{d t}=\frac{1}{\rho_{\text {air }} V_{\text {room }} c_{v}}\left(\rho q c_{p} T_{\text {in }}-\rho q c_{p} T+S_{g} A_{\text {windows }}+\left(A_{\text {window }}+A_{\text {wall }}\right) \sigma \varepsilon_{\text {sky }} T_{\text {sky }}^{4}-A_{\text {window }} \sigma \varepsilon_{\text {window }} T^{4}-A_{\text {wall }} \sigma \varepsilon_{\text {wall }} T^{4}\right)$
At $\mathrm{t}=0, T=T_{\text {in }}=293 \mathrm{~K}$

$$
\begin{aligned}
\frac{d T}{d t} & =\frac{1}{1200 \frac{g}{m^{3}} 300 m^{3} 0.716 \frac{J}{g K}}\binom{1000 \frac{w}{m^{2}} 15 m^{2}+(15+170) m^{2} 5.7 \times 10^{-8} \frac{W}{m^{2} K^{4}} \times 1.0 \times(268 K)^{4}}{-15 m^{2} 5.7 \times 10^{-8} \frac{W}{m^{2} K^{4}} \times 0.8 \times(293 K)^{4}-170 m^{2} 5.7 \times 10^{-8} \frac{W}{m^{2} K^{4}} \times 0.05 \times(293 K)^{4}} \\
& =+0.236^{\circ} \mathrm{Cs}^{-1}
\end{aligned}
$$

2. Transport/Diffusion

We start with the Langevin equation that describes a Random walk of a particle i :
$x_{j, n+1}^{i}=x_{j, n}^{i}+V_{j, n}^{i} \Delta t+d_{j} \omega_{j, n}^{i} \quad j=1,2,3$
Where $d_{j}=\sqrt{2 D_{j} \Delta t}=$ Dispersion distance in direction $j(\mathrm{~m}), D_{j}=$ Dispersion coefficient in direction $j\left(\mathrm{~m}^{2} \sec ^{-1}\right)$. The random walk model can be very useful, but to more accurately depict real life situations the model must account for certain physical or chemical behaviors. This question address two complications found in reality: the presence of boundaries and particle decay.
a) Write a MATLAB pseudocode that will model a continuous source at $(0,0,0)$ located on a boundary (e.g. a wall). The wall extends infinitely on the y-z plane and is described by $x=0$. The particles are released at the origin and diffuses into the region $x>0$, and cannot cross the wall. There is a flow in the y direction of $15 \mathrm{~m} / \mathrm{s}$. Include in your code how you would account for the fact that particles are not able to cross the boundary. In the code use the following numbers:
$D_{x}=D_{y}=D_{z}=25 \mathrm{~m}^{2} \mathrm{~s}^{-1}$. [HINT: the function abs(x) in MATLAB gives the absolute value of $\mathrm{x}]$.

b) Say that the particles in the above problem represent a substance that undergoes first order decay, i.e. the concentration is in the form $C=C_{0} \exp (k t)$. As an approximation, we assume that if the particle persists for longer than three times the e-folding time, they will disappear. Add to the pseudocode in part a) to account for the described decay behavior.
[example code not included in MIT OpenCourseWare materials]

3. Economics

Suppose that a hybrid car costs $\$ 2500$ more than and has a gas mileage $10 \mathrm{mi} /$ gallon greater than a conventional alternative ($28 \mathrm{mi} /$ gallon). If gasoline is $\$ 3.5 /$ gallon and you drive 10,000 miles per year, is the hybrid economically justified purchase, assuming an annual interest rate of 5\% and a car lifetime of 10 years?

Solution:

Yearly fuel cost of hybrid car $=\frac{10000 \mathrm{mi}}{\mathrm{yr}} \frac{\mathrm{gal}}{38 \mathrm{mi}} \frac{3.5 \$}{\mathrm{gal}}=\$ 921.05 /$ year
Yearly fuel cost of conventional car $=\frac{10000 \mathrm{mi}}{y \mathrm{gr}} \frac{\mathrm{gal}}{28 \mathrm{mi}} \frac{3.5 \$}{\mathrm{gal}}=\$ 1250 /$ year
Yearly fuel savings by hybrid vehicle = 1250-921.05 = \$328.95/year
To translate the yearly savings to a present value, use the following:
$C R F=\frac{1-(1+r)^{-N}}{r}$
$C R F=\frac{1-(1+0.05)^{-10}}{0.05}=7.72$
Present value $=C R F \times B_{t}=7.72 \times \$ 328.95=\$ 2539.49$
Since the present value of the saving is greater than the initial extra cost of the hybrid, buying the hybrid car is worthwhile.

4. Optimization - Resource allocation

Supplier A and B distributes natural gas to Destinations 12 and 3. Their maximum natural gas production are P_{maxA} and P_{maxB}. The costs of transporting the natural gas from each supplier to each destination are different due to the difference in distances. These are listed in the table below.

Supplier	Cost of distribution $c($ (/ton $)$ to Destination		
	1	2	3
A	$c_{A 1}$	$c_{A 2}$	$c_{A 3}$
B	$c_{B 1}$	$c_{B 2}$	$c_{B 3}$

The demand over one year of natural gas from the three destinations are as follows

Destination	1	2	3
Natural gas demand d (tons yr^{-1})	d_{1}	d_{2}	d_{3}

Supplier A and B would like to collectively minimize costs ($\$ \mathrm{yr}^{-1}$) of natural gas distribution (tons yr^{-1}) while meeting the demands of each destination (tons yr^{-1}).

Set up this optimization problem by defining the decision variables, objective functions, and constraints. Determine whether you should use linprog or quadprog (linear or quadratic programming) and provide all of the matrices (with the values in symbolic form) that you would enter into the appropriate MATLAB program.

Solution:

Decision variables x $=\left[\begin{array}{llllll}P_{A 1} & P_{A 2} & P_{A 3} & P_{B 1} & P_{B 2} & P_{B 3}\end{array}\right]$
Gas distribution from each supplier to demand (ton yr^{-1})
Objective function:
$\underset{x}{\text { Minimize }} \operatorname{Cost}\left(\mathrm{x}, \$ \mathrm{yr}^{-1}\right)=c_{A 1} P_{A 1}+c_{A 2} P_{A 2}+c_{A 3} P_{A 3}+c_{B 1} P_{B 1}+c_{B 2} P_{B 2}+c_{B 3} P_{B 3}$

Constraints:
Supply:

$$
P_{A 1}+P_{A 2}+P_{A 3} \leq P_{A \max }
$$

$$
P_{B 1}+P_{B 2}+P_{B 3} \leq P_{B \max }
$$

$$
P_{A 1}+P_{B 1} \geq d_{1}
$$

Demand: $\quad P_{A 2}+P_{B 2} \geq d_{2}$

$$
P_{A 3}+P_{B 3} \geq d_{3}
$$

Non-negativity constraints (lower bound): $\left.\begin{array}{lllllll}P_{A 1} & P_{A 2} & P_{A 3} & P_{B 1} & P_{B 2} & P_{B 3}\end{array}\right] \geq 0$
The objective function is linear with respect to the decision variables, so we will use linprog in MATLAB.
The syntax of linprog is
[X, FVAL, EXITFLAG, OUTPUT, LAMBDA] = LINPROG (f, A, b, Aeq, beq, LB , UB)
So in the example:
$f=\left[\begin{array}{c}c_{A 1} \\ c_{A 2} \\ c_{A 3} \\ c_{B 1} \\ c_{B 2} \\ c_{B 3}\end{array}\right] ; A=\left[\begin{array}{cccccc}1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ -1 & 0 & 0 & -1 & 0 & 0 \\ 0 & -1 & 0 & 0 & -1 & 0 \\ 0 & 0 & -1 & 0 & 0 & -1\end{array}\right] ; b=\left[\begin{array}{c}P_{A \max } \\ P_{B \max } \\ -d_{1} \\ -d_{2} \\ -d_{3}\end{array}\right] ; A_{\mathrm{eq}}=[] ; b_{\mathrm{eq}}=[] ; l b=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right] ; u b=[] ;$

5. Multiple objective optimization

a) There are 3 farms, all growing rice.

Water is allocated by an irrigation district to each farm to maximize district income (over all 3 farms)
The maximum land available for cultivation is specified for each farm.

Yield is enhanced by fertilizer application.
Fertilizer cost is negligible.
The objectives of this problem are to 1) allocate agricultural water to maximize profits, and 2) minimizing the nitrogen runoff from the farms
$p=$ Rice price ($\$$ tonnes ${ }^{-1}$)
$L_{i}=$ Crop area for Farm i (ha)
$Y_{i}=Y_{0 i}+\gamma_{i} F_{i}=$ Net yield Farm $i\left(\right.$ tonnes ha ${ }^{-1}$ season $^{-1}$)
$Y_{0 i}=$ Nominal yield Farm i (tonnes ha ${ }^{-1}$ season $^{-1}$)
$\gamma_{i}=$ Fertilizer enhanced yield coefficient for Farm i (tonnes crop (kg fertilizer) ${ }^{-1}$)
$F_{i}=$ Amount of fertilizer applied to Farm $i\left(\mathrm{~kg} \mathrm{ha}^{-1}\right.$ season-1)
$N_{i}=\eta_{i} F_{i} L_{\max i}=$ Nitrogen runoff from Farm $i\left(\mathrm{~kg}\right.$ season $\left.^{-1}\right)$
$L_{\text {max } i}=$ Maximum land area Farm i
[Note: As a simplification, above expression assumes fertilizer is applied to entire farm]
$\eta_{i}=$ Fraction of applied nitrogen that runs off Farm i (unitless)
$R=\sum_{i=1}^{3} N_{i}=$ Total nitrogen runoff $\left(\mathrm{kg}\right.$ season $\left.^{-1}\right)$
$W=\sum_{i=1}^{3} W_{i} L_{i}=$ Total water used $\left(\right.$ MCM season $\left.{ }^{-1}\right)$
$W_{i}=$ Unit water requirement Farm $i\left(\mathrm{MCM} \mathrm{ha}^{-1}\right.$ season $\left.^{-1}\right)$
Resource and environmental constraints:
Water: $\quad W \leq W_{\text {avail }}$
Land: $\quad L_{i} \leq L_{\max i}$ for each Farm i
i) Define the decision variables and the two objective functions
ii) Introduce the constraints such that the two objective functions are combined into one minimization problem.
iii) Sketch the Pareto frontier for the tradeoff of revenue and Nitrogen for this problem.

Solution

The two objective functions are
Maximize revenue:
$\underset{x}{\operatorname{Maximize}} \quad \operatorname{Revenue}(\mathrm{x})\left(\$ \mathrm{Sr}^{-1}\right)=p\left(Y_{o 1} L_{1}+\gamma_{1} F_{1} L_{1}+Y_{o 2} L_{2}+\gamma_{2} F_{2} L_{2}+Y_{o 3} L_{3}+\gamma_{3} F_{3} L_{3}\right)$
Minimize nitrogen runoff.
Minimize Runoff $=\sum_{i=1}^{3} N_{i}=\sum_{i=1}^{3} \eta_{i} F_{i} L_{\max i}$

$$
\left.\begin{array}{l}
=-p \frac{1}{2}\left[\begin{array}{llllll}
L_{1} & L_{2} & L_{3} & F_{1} & F_{2} & F_{3}
\end{array}\right]\left[\begin{array}{cccccc}
0 & 0 & 0 & \gamma_{1} & 0 & 0 \\
0 & 0 & 0 & 0 & \gamma_{2} & 0 \\
0 & 0 & 0 & 0 & 0 & \gamma_{3} \\
\gamma_{1} & 0 & 0 & 0 & 0 & 0 \\
0 & \gamma_{2} & 0 & 0 & 0 & 0 \\
0 & 0 & \gamma_{3} & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
L_{1} \\
L_{2} \\
L_{3} \\
F_{1} \\
F_{2} \\
F_{3}
\end{array}\right]+-p\left[\begin{array}{lllll}
Y_{o 1} & Y_{o 2} & Y_{o 3} & 0 & 0
\end{array}\right]
\end{array}\right]\left[\begin{array}{l}
L_{1} \\
L_{2} \\
L_{3} \\
F_{1} \\
F_{2} \\
F_{3}
\end{array}\right]
$$

Based on the constraints
\(\left[$$
\begin{array}{cccccc}W_{1} & W_{2} & W_{3} & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & \eta_{1} L_{\max 1} & \eta_{2} L_{\max 2} & \eta_{3} L_{\max 3}\end{array}
$$\right]\left[$$
\begin{array}{c}L_{1} \\
L_{2} \\
L_{3} \\
F_{1} \\
F_{2} \\
F_{3}\end{array}
$$\right] \leq\left[\begin{array}{c}W_{avail}

L_{1 max}

L_{2 \max }

L_{3 \max }

R_{\max }\end{array}\right]\) water | land1 |
| :--- |
| land2 |
| lagen runoff (2nd Objective function) |

$A x \leq b$
And the lower bounds are
$\left[\begin{array}{c}L_{1} \\ L_{2} \\ L_{3} \\ F_{1} \\ F_{2} \\ F_{3}\end{array}\right] \geq\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]$
There are no equality constraints or upper bounds defined here, so the Aeq, beq and ub matrices are empty [].
This is now formulated in the same way as Problem Set 6. The tradeoff curve for revenue and Nitrogen is therefore the graph of Revenue against Rmax, reproduced from PS6 here.

6. Life Cycle Analysis

The process of making flat glass is complex and involves several materials, including silica sand, soda ash, limestone, dolomite and cullets (recycled glass fragments). The tables below provide a simplified list of input/outputs for some of the processes involved in the production of flat glass. Draw a process flow chart, construct technology and environmental matrices for a Life Cycle Analysis and calculate the total Antimony Emissions for a final total economic output of 20 kg of flat glass. (Note: antimony and its compounds are toxic in a similar way as arsenic).

Final product: $\mathbf{2 0} \mathbf{~ k g}$ of flat glass
Silica Sand mining

Output	Input
Silica Sand: 1 kg	Silica Sand (resource):1.15 kg
Antimony: $1.7 \mathrm{E}-13 \mathrm{Kg}$	

Transportation 16t truck

Output	Input
16 t truck: 1 ton-km	Diesel fuel:0.21 kg
Antimony: $3.691 \mathrm{E}-9 \mathrm{Kg}$	

Flat Glass production

Output	Input
Flat Glass: 1 kg	Silica Sand: 0.51 kg
Antimony: $2.91 \mathrm{E}-10 \mathrm{Kg}$	Soda Ash (resource): 0.16 kg
	16 t truck: 0.13 ton-km

Solution:

Process flow chart

to/from environment

Based on the Process Flow chart and inputs and output table,
The A matrix is (note: convention is to read down each column and account for the processes required on each row, and not vice versa)

A matrix	Flat Glass $\mathbf{k g}$	Silica sand $\mathbf{k g}$	Transportation 16t truck 1ton-km
Flat Glass 1kg	1	0	0
Silica sand kg	-0.51	1	0
Transportation 16t truck ton-km	-0.13	0	1

The economic matrix f is accounts for what we want out of the process; in this case it is 20 kg of Flat glass.

f matrix	Economic matrix
Flat Glass 1kg	20
Silica sand kg	0
Transportation 16t truck ton-km	0

In order to scale up the production from 1 kg to 20 kg of flat glass, we need to calculate a scaling matrix (s) from the economic matrix (f) and the technology matrix (A).
$s=A^{-1} f=\left[\begin{array}{ccc}1 & 0 & 0 \\ -0.51 & 1 & 0 \\ -0.13 & 0 & 1\end{array}\right]^{-1}\left[\begin{array}{c}20 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{c}20 \\ 10.2 \\ 2.6\end{array}\right]$

The environmental matrix B consists of the resources and environmental variables

B matrix	Flat Glass $\mathbf{k g}$	Silica sand $\mathbf{k g}$	Transportation 16t truck ton-km
Silica sand (resource) kg	0	-1.15	0
Diesel fuel kg	0	0	-0.21
Soda ash (resource) $\mathbf{k g}$	-0.16	0	0
Antimony kg	$2.91 \mathrm{E}-10$	$1.7 \mathrm{E}-13$	$3.691 \mathrm{E}-9$

Now the required matrices are complete for carrying out the LCA - the g matrix gives the net resources produced or taken to produce 20 kg of flat glass. This is calculated by

$$
g=B s=\left[\begin{array}{cccc}
0 & -1.15 & 0 \\
0 & 0 & -0.21 \\
-0.16 & 0 & 0 \\
2.91 E-10 & 1.7 E-13 & 3.691 E-9
\end{array}\right]\left[\begin{array}{c}
20 \\
10.2 \\
2.6
\end{array}\right]=\left[\begin{array}{c}
-11.73 \\
-0.546 \\
-3.2 \\
1.54 E-8
\end{array}\right]
$$

So the results can be tabulated as follows:

g matrix	Resources produced for 20 kg Flat glass
Silica sand (resource) kg	-11.73
Diesel fuel kg	-0.546
Soda ash (resource) $\mathbf{k g}$	-3.2
Antimony kg	$1.54 \mathrm{E}-8$

