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MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Civil and Environmental Engineering


1.020 Ecology II: Engineering for Sustainability 

Practice Questions and Solutions for Exam 2 on May 7, 2008 9:30-11am 

Exam Review Friday May 2nd, 2008 9-11am, Monday May 5th, 2008, 7-9pm 


1. Open Systems 

a) A stream of 5 m3/s of cooling water at 15 °C flows through a power plant and accepts 10 MW 
of heat before leaving. What is the final temperature of the cooling water if this is happening 
at steady state? Use the following values: cp  of water = 4200 J kg-1 K-1; density = 1000 kg 
m-3. Assume the water inside the power plant is well mixed. 

Solution:  Open system energy conservation: 

mpowerplantcv 
dTout = m� hin − m� hout + Q� 

dt 
dTout = 0; m� hin = ρqcpTin m� hout = ρqcpToutdt


Æ 0 = ρqcpTin − ρqcpTout + Q�


0 = ρqcp (Tin − Tout ) + Q� 

Solving for Tout, Tout = Tin + 
Q� 

= 19.8 °C.
ρqcp 

b) A room initially at 20 degrees C has constant ventilation from an outside breeze that enters 
and leaves on opposite sides of the room. The walls and windows are good insulators of 
conduction and convection. The walls do not transmit the incoming solar radiation into the 
room, however it can emit radiation from the room outward to the outside.  The windows 
initially have their blinds shut, blocking off solar radiation.  In the middle of the day, you 
open the blinds. Assume that the solar radiation received is uniform on all surfaces of the 
room.  Write a differential equation for the unknown temperature of the room T. Calculate 
the initial rate of increase in the temperature of the room (degrees C s-1) given the following: 

Constant volume specific heat of air: cv = 0.716 joule gm-1 °C-1 (to compute internal energy) 
Constant pressure specific heat of air cp = 1.0 joule gm-1 °C-1 (to compute enthalpy) 
Incoming solar radiation Sg= 1000 W m-2 

Stefan Boltzmann constant σ = 5.7 ×10−8 W m-2 K-4 

Sky temperature Tsky = -5 °C 
Emissivity of sky ε sky =1 



 

Emissivity of windows εwindow = 0.8 
Emissivity of walls εwall = 0.05 

Flow of draft through room = 0.3 m3 s-1


Density of air: 1100 gm m-3


Volume of room: 300 m3 


Surface area of room (excluding windows) = 170 m2


Surface area of windows = 15 m2


Outside air temperature:  20 °C 


Solution: Open system energy conservation: 
dT dT mroomcv = m� hin − m� hout + Q� or ρairVroomcv = m� hin − m� hout + Q� 
dt dt 

Enthalpy terms (energy from flow in/out of system) m� hin = ρqc pTin ; m� hout = ρqcpTout 

Q� = radiative heat terms (J/s) 
4 4 4= Sg Awindows + ( Awindow + Awall )σε skyTsky − AwindowσεwindowT − AwallσεwallT 

Therefore the differential equation for T is 
dT 1 4 4 4= (ρqcpTin − ρqcpT + Sg Awindows + ( Awindow + Awall )σε skyTsky − AwindowσεwindowT − AwallσεwallT )
dt ρairVroomcv 

At t= 0, T = Tin = 293K 

dT 1 ⎛
⎜1000 

m
w 15m2 + (15 + 170)m25.7 ×10−8 

m
W

K 
×1.0 × (268K )4 ⎞

⎟2 2 4 

= 
dt 1200 g 300m30.716 J ⎜⎜− 15m25.7 ×10−8 W × 0.8 × (293K )4 − 170m25.7 ×10−8 W × 0.05 × (293K )4 ⎟⎟

m3 gK ⎝ m 2 K 4 m 2 K 4 ⎠ 
=+0.236°Cs-1 

2. Transport/Diffusion 

We start with the Langevin equation that describes a Random walk of a particle i: 

xi
j,n+1 = xi

j,n + V j
i 
,nΔt + d jω

i
j,n j = 1,2,3 

Where d j = 2D j Δt = Dispersion distance in direction j (m), D j = Dispersion coefficient in 
direction j (m2 sec-1). The random walk model can be very useful, but to more accurately depict 
real life situations the model must account for certain physical or chemical behaviors.  This 
question address two complications found in reality: the presence of boundaries and particle 
decay. 

a) Write a MATLAB pseudocode that will model a continuous source at (0,0,0) located on a 
boundary (e.g. a wall). The wall extends infinitely on the y-z plane and is described by x=0. The 
particles are released at the origin and diffuses into the region x>0, and cannot cross the wall. 
There is a flow in the y direction of 15 m/s. Include in your code how you would account for the 
fact that particles are not able to cross the boundary.  In the code use the following numbers: 



x D = Dy = Dz = 25 m2s-1. [HINT: the function abs(x) in MATLAB gives the absolute value of 
x]. 

Wall at x=0 

x 

z 

y 

Continuous 
source at (0,0,0) 

b) Say that the particles in the above problem represent a substance that undergoes first order 
decay, i.e. the concentration is in the form C = C0 exp(− kt) . As an approximation, we assume 
that if the particle persists for longer than three times the e-folding time, they will disappear.  
Add to the pseudocode in part a) to account for the described decay behavior.   
 
 
[example code not included in MIT OpenCourseWare materials] 



3. Economics 

Suppose that a hybrid car costs $2500 more than and has a gas mileage 10 mi/gallon greater than 
a conventional alternative (28 mi/gallon). If gasoline is $3.5/gallon and you drive 10,000 miles 
per year, is the hybrid economically justified purchase, assuming an annual interest rate of 5% 
and a car lifetime of 10 years? 

Solution: 
Yearly fuel cost of hybrid car = 10000mi gal 3.5$ = $921.05 / yearyr 38mi gal 

Yearly fuel cost of conventional car = 10000mi gal 3.5$ = $1250 / yearyr 28mi gal 

Yearly fuel savings by hybrid vehicle = 1250-921.05 = $328.95/year 
To translate the yearly savings to a present value, use the following: 

1 − (1 + r)−N 
CRF = 

r 
1 − (1 + 0.05)−10 

CRF = =7.72 
0.05 

Present value = CRF × Bt = 7.72 × $328.95 = $2539.49 
Since the present value of the saving is greater than the initial extra cost of the hybrid, buying the 
hybrid car is worthwhile. 

4. Optimization – Resource allocation 

Supplier A and B distributes natural gas to Destinations 1 2 and 3.  Their maximum natural gas 
production are PmaxA and PmaxB. The costs of transporting the natural gas from each supplier to 
each destination are different due to the difference in distances.  These are listed in the table 
below. 

Supplier Cost of distribution c($/ton) to Destination 
1 2 3 

A cA1 cA2 cA3 
B cB1 cB2 cB3 

The demand over one year of natural gas from the three destinations are as follows 

Destination 1 2 3 
Natural gas demand d (tons yr-1) d1 d2 d3 

Supplier A and B would like to collectively minimize costs ($ yr-1) of natural gas distribution 
(tons yr-1) while meeting the demands of each destination (tons yr-1). 



 
Set up this optimization problem by defining the decision variables, objective functions, and 
constraints. Determine whether you should use linprog or quadprog (linear or quadratic 
programming) and provide all of the matrices (with the values in symbolic form) that you would 
enter into the appropriate MATLAB program. 

Solution: 

Decision variables x = [PA1 PA2 PA3 PB1 PB2 PB3] 
Gas distribution from each supplier to demand (ton yr-1) 

Objective function: 
Minimize Cost(x, $yr-1) P
 A2PA2 +
cA3PA3 +
cB1PB +
cB2PB2 +
cB PB3+
cc=
 A1 A1 1 3 

x 

Constraints: 
P
 PA PA PA≤
+
 +
A1 2 3 maxSupply: 
PB PB PB PB≤
+
 +

≥

1 2 3 max 

P
 PB d1+
A1 1 

PA PB dDemand: ≥
+
2 2 2 

PA PB d≥
+
3 3 3 

[PA1 PA2 PA3 PB1 PB2 PBNon-negativity constraints (lower bound): ]
≥
0
3 

The objective function is linear with respect to the decision variables, so we will use linprog in 
MATLAB. 
The syntax of linprog is 
[X,FVAL,EXITFLAG,OUTPUT,LAMBDA]= LINPROG(f,A,b,Aeq,beq,LB,UB) 


So in the example: 
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5. 

⎣
 ⎦
⎦


Multiple objective optimization 

a) There are 3 farms, all growing rice. 

Water is allocated by an irrigation district to each farm to maximize district income

(over all 3 farms) 

The maximum land available for cultivation is specified for each farm. 




Yield is enhanced by fertilizer application. 

Fertilizer cost is negligible. 

The objectives of this problem are to 1) allocate agricultural water to maximize profits, and 2) 

minimizing the nitrogen runoff from the farms 


p = Rice price ($ tonnes-1) 

Li = Crop area for Farm i (ha) 

Yi = Y0i + γ i Fi  = Net yield Farm i (tonnes ha-1 season-1) 

Y0i = Nominal yield Farm i (tonnes ha-1 season-1) 

γ i = Fertilizer enhanced yield coefficient for Farm i (tonnes crop (kg fertilizer)-1) 

Fi = Amount of fertilizer applied to Farm i (kg ha-1 season-1) 

Ni =ηi Fi Lmax i = Nitrogen runoff from Farm i (kg season-1) 


Lmax i = Maximum land area Farm i 
[Note: As a simplification, above expression assumes fertilizer is applied to entire farm]    

ηi = Fraction of applied nitrogen that runs off Farm i (unitless) 
3 

R = ∑ Ni = Total nitrogen runoff (kg season-1) 
i=	1


3


W = ∑Wi Li =  Total water used (MCM season-1) 
i=1 

Wi =  Unit water requirement Farm i (MCM ha-1 season-1) 

Resource and environmental constraints: 
Water: W ≤ Wavail 

Land: Li ≤ Lmax i for each Farm i 

i) Define the decision variables and the two objective functions  
ii) Introduce the constraints such that the two objective functions are combined into one 

minimization problem. 
iii) Sketch the Pareto frontier for the tradeoff of revenue and Nitrogen for this problem. 

Solution 

The two objective functions are 
Maximize revenue: 
Maximize Revenue(x) ( $yr-1) = p(Yo1L1 + γ1F1L1 + Yo2L2 + γ 2F2 L2 + Yo3L3 + γ 3F3L3 ) 

x 
Minimize nitrogen runoff. 

3 3 
Minimize Runoff = ∑ Ni = ∑ ηi Fi Lmax i 

i =1 i =1 
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Based on the constraints 
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There are no equality constraints or upper bounds defined here, so the Aeq, beq and ub matrices 

are empty []. 

This is now formulated in the same way as Problem Set 6.  The tradeoff curve for revenue and 

Nitrogen is therefore the graph of Revenue against Rmax, reproduced from PS6 here. 




6. Life Cycle Analysis 

The process of making flat glass is complex and involves several materials, including silica sand, 
soda ash, limestone, dolomite and cullets (recycled glass fragments). The tables below provide a 
simplified list of input/outputs for some of the processes involved in the production of flat glass. 
Draw a process flow chart, construct technology and environmental matrices for a Life Cycle 
Analysis and calculate the total Antimony Emissions for a final total economic output of 20 kg of 
flat glass. (Note: antimony and its compounds are toxic in a similar way as arsenic). 

Final product: 20 kg of flat glass 
Silica Sand mining 

Output Input 
Silica Sand: 1 kg Silica Sand (resource):1.15 kg 
Antimony:  1.7E-13 Kg 

Transportation 16t truck 

Output Input 
16t truck: 1 ton-km Diesel fuel:0.21 kg 
Antimony:  3.691E-9 Kg 

Flat Glass production 

Output Input 
Flat Glass: 1 kg Silica Sand: 0.51 kg 
Antimony:  2.91E-10 Kg Soda Ash (resource): 0.16 kg 

16t truck: 0.13 ton-km 
Solution: 
Process flow chart 

Silica sand 
production 

Transportation by 
16t truck 

Flat glass 
production 

= Exchange 
to/from 
environment 

Based on the Process Flow chart and inputs and output table, 

The A matrix is (note: convention is to read down each column and account for the processes 

required on each row, and not vice versa) 




A matrix Flat Glass 
kg 

Silica sand 
kg 

Transportation 
16t truck 
1ton-km 

Flat Glass 1kg 1 0 0 

Silica sand kg -0.51 1 0 

Transportation 
16t truck 
ton-km 

-0.13 0 1 

The economic matrix f is accounts for what we want out of the process; in this case it is 20 kg of 
Flat glass. 

f matrix Economic 
matrix 

Flat Glass 1kg 20 

Silica sand kg 0 

Transportation 
16t truck 
ton-km 

0 

In order to scale up the production from 1 kg to 20 kg of flat glass, we need to calculate a scaling 
matrix (s) from the economic matrix (f) and the technology matrix (A). 
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The environmental matrix B consists of the resources and environmental variables 

B matrix Flat Glass 
kg 

Silica sand 
kg 

Transportation 
16t truck 
ton-km 

Silica sand 
(resource) 
kg 

0 -1.15 0 

Diesel fuel kg 0 0 -0.21 

Soda ash 
(resource) kg 

-0.16 0 0 

Antimony 
kg 

2.91E-10 1.7E-13 3.691E-9 

Now the required matrices are complete for carrying out the LCA – the g matrix gives the net 
resources produced or taken to produce 20 kg of flat glass.  This is calculated by 

0 
− 

So the results can be tabulated as follows: 
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g matrix Resources produced 
for 20 kg Flat glass 

Silica sand 
(resource) 
kg 

-11.73 

Diesel fuel kg -0.546 

Soda ash 
(resource) kg 

-3.2 

Antimony 
kg 

1.54E-8 




