MIT OpenCourseWare
http://ocw.mit.edu

1.020 Ecology II: Engineering for Sustainability

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

1.020 Ecology II: Engineering for Sustainability

Lectures 08_16 \& 08_17 Economic Optimization, Derived Demand, Irrigation

Motivation/Objective

Develop a model/optimization procedure to determine the most economically productive way to allocate limited resources (land and water) for a farm growing 2 crops.

Approach

1. Formulate allocation of limited resources as an optimization (quadratic programming) problem. Define objective (maxmize crop revenue, $\$$), decision variables (land for each crop, ha), constraints (water and land limitations).
2. Put problem in a form suitable for solution in MATLAB. Construct all matrices required by MATLAB quadprog function.
3. Solve problem in MATLAB and evaluate sensitivities to resource constraints (also called shadow prices or Lagrange multipliers) for a range of water availabilities.
4. Consider how problem inputs (crop yield, crop water demand, crop prices, etc.) affect solution.

Concepts and Definitions Needed:

Resource allocation -- to obtain derived demand we focus on effect of resource limits on crop revenue.
General resource allocation optimization problem:

```
\(\operatorname{Maximize} F_{r e v}(x)=\operatorname{Net} \operatorname{revenue}(x) \quad\) (\$) Objective function
\(x=\) vector of quantities produced Decision variables
Such that following constraints hold for each resource:
```

Resource used $(x) \leq$ Resource available Inequality constraints
Upper and lower bounds on x
Inequality constraints
Physical constraints (e.g. mass, energy balance)
Equality constraints

For 2 crop example this becomes:
Objective:
Maximize $F_{\text {rev }}(x)=\sum_{\mathrm{i}=1}^{2} p_{i} Y_{i} x_{i}, p_{i}=$ Price crop $i\left(\$\right.$ tonne $\left.^{-1}\right) Y_{i}=$ Yield crop $i\left(\right.$ tonne ha ${ }^{-1}$ season $\left.^{-1}\right)$
$F_{\text {rev }}(x)=\operatorname{revenue}\left(\$\right.$ season $\left.^{-1}\right) \quad x=\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right], x_{i}=$ Area crop $i(h a)$
$Y_{i}=Y_{i 0}-d_{i} x_{i} \quad Y_{i 0}=$ nominal yield (tonne ha ${ }^{-1}$ season $^{-1}$)
$d_{i}=$ yield reduction coef (tonne ha ${ }^{-2}$ season $^{-1}$)
Constraints: $\quad\left(\mathrm{MCM}=10^{6} \mathrm{~m}^{3}\right), \quad w_{i}=$ Water rqmt crop $i\left(\mathrm{MCM} \mathrm{ha}^{-1}\right.$ season $\left.^{-1}\right)$
Water: $\sum_{i=1}^{2} w_{i} x_{i} \leq Q=$ water available $\left(\mathrm{MCM}\right.$ season $\left.^{-1}\right)$
Land: $\sum_{i=1}^{2} x_{i} \leq L_{\text {avail }}=$ land available (ha)
Nonnegativity: $x_{\mathrm{i}} \geq 0 \quad i=1,2$

Input Arrays for MATLAB (quadprog):

Quadprog format:
$\underset{x}{\text { Minimize }} F_{r e v}(x)=\frac{1}{2} x^{T} H x+f^{T} x \quad$ Find decision variables x that minimize $F_{r e v}(x)$ such that:

$$
\begin{array}{ll}
A x \leq b & \text { Inequality constraints } \\
A_{e q} x=b_{e q} & \text { Equality constraints }
\end{array}
$$

$$
x_{l b} \leq x \leq x_{u b} \quad \text { Lower and upper bound constraints }
$$

For 2 crop resource allocation problem (converted to minimization problem):

$$
\begin{aligned}
& f=-\left[\begin{array}{ll}
p_{1} Y_{10} & p_{2} Y_{20}
\end{array}\right] H=2\left[\begin{array}{cc}
p_{1} d_{1} & 0 \\
0 & p_{2} d_{2}
\end{array}\right] \quad A=\left[\begin{array}{cc}
w_{1} & w_{2} \\
1 & 1
\end{array}\right] \quad b=\left[\begin{array}{c}
Q \\
L_{\text {avail }}
\end{array}\right] \quad x_{l b}=\left[\begin{array}{ll}
0 & 0
\end{array}\right] \\
& A_{e q}=b_{e q}=x_{u b}=[] \quad \text { (unused for this example) }
\end{aligned}
$$

Make sure that H is a symmetric matrix.
Shadow price of water $=\lambda(Q)=\frac{\partial F_{r e v}(x)}{\partial Q},\left(\$ \mathrm{~m}^{-3}\right)$
Plot of $\lambda(Q)$ vs Q gives derived demand (a curve).

Crop Allocation Example Results

Crop 2 (lower water rqmt) preferred over Crop 1 (higher value per ha), especially when water is limited.
Plots show that revenue increases at a diminishing rate as available water increases Demand for water decreases as available water increases
Results depend strongly on yield loss coefficient

