MIT OpenCourseWare <u>http://ocw.mit.edu</u>

1.020 Ecology II: Engineering for Sustainability Spring 2008

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.

Lectures 08_19 Derived Supply, Equilibrium, Groundwater Pumping

Motivation/Objective

Extend the derived demand model of Lectures 08_16 & 08_17 to include the cost of supplying water from a single groundwater well. Combine derived supply and demand to obtain an equilibrium solution.

Approach

1. Derive an expression for the marginal cost of supplying water from a single groundwater well. Identify factors affecting pumping cost.

2. Add the supply curve calculation to the MATLAB program of Lectures 08_16 & 08_17

3. Identify the equilibrium solution (intersection of supply and demand curves)

4. Consider how problem inputs (aquifer transmissivity, energy cost, etc.) affect solution.

Concepts and Definitions Needed:

Pumping cost at supply well depends on flow rate and depth to water:

 $F_{cost} = p\dot{E}\Delta t = p\rho g\Delta t (z_g - h)Q$ (\$ season⁻¹) p = energy price (\$ joule⁻¹)

 \dot{E} = power required to pump water (watts), Δt = length of irrigation season (sec season⁻¹)

 Q_i = Pumping rate at $i (m^3 \text{ sec}^{-1})$, z_g = ground surface elev. (m) h = groundwater elev. (m)

Pumping at the well affects h. Derive h(Q) using rate form of mass balance eq in radial coords: Mass rate pumped from well = mass rate flowing through soil toward well

Mass balance: $\rho Q = \rho 2\pi rq$ (kg sec⁻¹) $q = T \frac{dh(r)}{dr}$ = radial flow per unit width (m³ m⁻¹sec⁻¹)

T =Soil transmissivity (m² sec⁻¹)

Substitute *q* in mass balance to get differential eq. for *h*:

$$\frac{dh(Q)}{dr} = \frac{Q}{2\pi rT} \qquad \text{Solve for } h(Q): \quad h(Q) = h_0 + \frac{Q}{2\pi T} \ln\left[\frac{r_w}{r_0}\right] \quad r_0 >> r_w$$

 r_w = well radius (m) r_0 = distance where $h(Q) = h_0$ = water level at well when Q = 0Marginal cost of supplying water:

$$\mu(Q) = \frac{\partial F_{cost}}{\partial Q} = \frac{\partial}{\partial Q} \left[p \rho g \Delta t [z_g - h(Q)] Q \right] = p \rho g \Delta t \left[z_g - h_0 - \frac{Q}{\pi T} \ln \left(\frac{r_w}{r_0} \right) \right] \quad (\$ \text{ m}^{-3})$$

Include this expression in crop allocation optimization code from Lectures 08_16 & 08_17. Plot of $\mu(Q)$ vs Q gives derived supply (a curve).

Intersection of supply $\mu(Q)$ and demand $\lambda(Q)$ defines equilibrium solution $[Q_{eq}, \lambda_{eq}]$.

Crop Allocation Results with Groundwater Supply Cost Included

Supply curve is linear in Q. Note dependence of equilibrium solution on problem inputs (price, transmissivity, unpumped depths to groundwater, etc.)