MIT OpenCourseWare <u>http://ocw.mit.edu</u>

1.020 Ecology II: Engineering for Sustainability Spring 2008

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.

Lectures 08_1 & 08_2 Outline: Introduction, Mass Balance, Everglades

Introduction: See course information sheet

Motivation/Objective:

Develop a model to compute time-varying phosphorous concentrations in a stormwater detention pond. Examine effect of pond size.

Approach:

1. Define system, control volume (CV), system properties, identify unknown (dissolved pond phosphorous concentration C_t at time t)

- 2. Write mass balance equation (incremental, over a specified time interval)
- 3. Relate boundary and gain/loss terms in mass balance equation to unknown C_t .
- 4. Specify all inputs, solve mass balance equation for unknown (MATLAB)
- 5. Use model to evaluate how different pond characteristics affect phosphorous concentration.

Concepts and Definitions:

Definitions: system, surroundings, control volume

Distinguish isolated, closed, open systems

Thermodynamic systems are described by bulk system properties, processes

Distinguish mass inflows/outflows across CV boundary from internal gains/losses. Mass Conservation:

Incremental form:
$$\Delta M_{cv} = \Delta M_{in} - \Delta M_{out} + \Delta M_{gain} - \Delta M_{loss}$$
 over [t, t+1]

Instantaneous (or rate) form: $\frac{dM_{cv}}{dt} = \dot{m}_{in} - \dot{m}_{out} + \dot{m}_{gain} - \dot{m}_{loss}$

Steady-state: $\Delta M_{cv} = \frac{dM_{cv}}{dt} = 0$

Distinguish conservative vs non-conservative system properties. Relationship between mass and concentration: $M_{cv} = V_{cv}C_{cv}$

For Everglades example (open system):

 $\Delta M_{cv} = VC_{t+1} - VC_t$, $\Delta M_{in} = q_{in}C_{in,t}\Delta t$, $\Delta M_{out} = qC_t\Delta t$, $\Delta M_{loss} = \alpha C\Delta t$, $\Delta M_{gain} = 0$ q =flow rate (m³ hr⁻¹) (inflow = outflow), $C_{in} =$ phopsohorous concentration in inflow

Final Mass Balance Equation (expressed in terms of the unknown concentration C_t):

 $C_{t+1} = C_{in,t} \frac{\Delta t}{\tau} + [1 - \frac{\Delta t}{\tau} - \alpha \Delta t]C_t$, $\tau = \frac{V}{q}$ = residence time, Δt = interval (hrs) between t and t+1

Model Results

Note impact of pond volume and plant uptake rate on magnitude and variability of pond phosphorous concentrations.