MIT OpenCourseWare <u>http://ocw.mit.edu</u>

1.020 Ecology II: Engineering for Sustainability Spring 2008

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.

Lectures 08_20 Multiple Objectives, Pareto Optimality

Motivation/Objective

Develop a way to compare values of different resource uses. Consider tradeoff between using limited water for farm revenue vs. using water for preservation of the riparian ecosystem.

Approach

1. Introduce a riparian ecological abundance measure as a second objective in the resource allocation problem of Lectures 8_16 and 08_17. This simplified measure assumes abundance is a linear function of the flow downstream of the irrigation diversion. We would like to maximize both revenue and abundance but these objectives conflict.

2. Include abundance objective as a constraint in the resource allocation problem and use

MATLAB to evaluate the tradeoff between revenue and diversity.

3. Display tradeoff as a Pareto frontier (set of Pareto optimal solutions).

4. Consider how tradeoff depends on technological inputs (e.g. water requirement, yield).

Concepts and Definitions Needed:

Multiobjective optimization problem:

$\underset{x}{Maximize F_{rev}(x)} = \text{Revenue } (\$)$	Objective function 1
$\underset{x}{Maximize F_{abd}}(x) = \text{Ecological abundance (unitless 0-1)}$	1) Objective function 2
x = vector of decision variables	Decision variables
Such that following constraints hold for each resource:	
Resource used $(x) \leq$ Resource available	Inequality constraints
Upper and lower bounds on <i>x</i>	Inequality constraints
Physical constraints (e.g. mass, energy balance)	Equality constraints

We seek Pareto optimal solutions (solutions where one objective can be improved only at the expense of the other). Other solutions are either infeasible or inferior.

For 2 crop example identify Pareto frontier by converting one objective (Objective 2) to a constraint: $F_{abd}(x) \ge F_{abdmin}$.

Pareto frontier is F_{rev} vs F_{abdmin} curve. Points along frontier correspond to particular solutions (*x*). Modify optimization problem of Lecture 08_16 & 08_17 to include upstream water limit and abundance constraint:

Maximize
$$F_{rev}(x) = \sum_{i=1}^{2} p_i Y_i x_i$$

 $x = \begin{bmatrix} x_1 & x_2 & D \end{bmatrix}$, $x_i = \text{Area crop } i$ (ha), $D = \text{diversion to farm (MCM season^{-1})}$
 $Y_i = Y_{i0} - d_i x_i \quad Y_{i0} = \text{nominal yield (tonne ha^{-1} season^{-1})}$
 $d_i = \text{yield reduction coef (tonne ha^{-2} season^{-1})}$
Constraints: (MCM = 10^6 m^3), $w_i = \text{Water rqmt crop } i$ (MCM ha⁻¹ season⁻¹)

Supply $D \le U =$ upstream flow (MCM season⁻¹)Water: $\sum_{i=1}^{2} w_i x_i \le D =$ water diverted to farm (MCM season⁻¹)Land: $\sum_{i=1}^{2} x_i \le L_{avail} =$ land available (ha)Abundance: $\beta[U - D] \ge F_{abdmin} \rightarrow \beta D \le \beta U - F_{abdmin}$ Nonnegativity: $x_i \ge 0$ i = 1, 2, 3

Input Arrays for MATLAB (quadprog): Quadprog format:

Minimize $F_{rev}(x) = \frac{1}{2}x^T Hx + f^T x$ Find decision variables x that minimize $F_{rev}(x)$ such that : $Ax \le b$ Inequality constraints $A_{eq}x = b_{eq}$ Equality constraints $x_{lb} \le x \le x_{ub}$ Lower and upper bound constraintsFor multiobjective problem (converted to minimization problem):

 $\begin{bmatrix} p_1 d_1 & 0 & 0 \end{bmatrix}$

$$f = -[p_1 Y_{10} \quad p_2 Y_{20} \quad 0] \qquad H = 2 \begin{bmatrix} P_1 W_1 & P_2 W_2 \\ 0 & p_2 d_2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
$$A = \begin{bmatrix} 0 & 0 & 1 \\ w_1 & w_2 & -1 \\ 1 & 1 & 0 \\ 0 & 0 & \beta \end{bmatrix} \qquad b = \begin{bmatrix} U \\ 0 \\ L_{avail} \\ \beta U - F_{abdmin} \end{bmatrix} \qquad x_{lb} = [0 \ 0 \ 0] \qquad A_{eq} = b_{eq} = x_{ub} = [] \quad (unused)$$

Make sure that *H* is a symmetric matrix. Plot of F_{rev} vs F_{abdmin} gives Pareto frontier.

Tradeoff Results

Note dependence of tradeoff curve problem inputs (farm inputs, β , etc.)