MIT OpenCourseWare <u>http://ocw.mit.edu</u>

1.020 Ecology II: Engineering for Sustainability Spring 2008

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.

Lectures 08_6 & 08_7 Outline: Networks, Traffic Modeling

Motivation/Objective

Develop a model to compute atmospheric (CO) emissions rates from vehicles on a road network

Approach

Formulate mathematical description of system (road network: nodes, directed links, paths).
Select variables to describe steady-state vehicle movement through the network. Identify

unknowns (link flow rates x_1 and link travel times t_1).

3. Formulate coupled equations that use linear travel-time functions, mass balance conditions, and a user equilibrium condition to relate unknown flows and travel times.

- 4. Specify network properties, solve equations for unknowns (MATLAB)
- 5. Relate emissions rate to network variables, examine effect of network properties on emissions

Concepts and Definitions:

Networks: Represent with nodes, directed links, and paths. Describe connectivity, specify link lengths.

Steady-state condition: Flow into network = flow out of network.

Conditions used to relate link travel times t_1 (hr) and vehicle flow rates x_1 (vehicles hr⁻¹):

- Link travel-time functions: $t_l = f(x_l) = t_0 + \alpha_l x_l^{\beta_l}$ for link *l*. Asume $t_l = f(x_l)$ is linear $(\beta_l = 1)$ for the example.
- Mass balance at nodes: sum of x_i for links entering node = sum of x_i for links leaving node.
- User equilibrium condition: path travel times are equal for all possible paths

Each conditions generates linear equations in the unknown link times and flows.

Emissions: Used to compute source rate of pollutant to atmosphere (g km⁻¹ hr⁻¹) from each link $E_l(v_l) = x_l c_l(v_l) \gamma_l(v_l)$, $c_l(v_l) = \text{consumption}$, $\gamma_l(v_l) = \text{production rate}$, $v_l = x_l / t_l = \text{vehicle}$ velocity

Network balance eqs:

Assemble the three types of linear equations in a matrix form and solve with MATLAB:

$$\begin{bmatrix} A_{travel,t} & A_{travel,x} \\ A_{mass,t} & A_{mass,x} \\ A_{equil,t} & A_{equil,x} \end{bmatrix} \begin{bmatrix} t \\ x \end{bmatrix} = \begin{bmatrix} b_{travel} \\ b_{mass} \\ 0 \end{bmatrix} , t \text{ and } x \text{ are vectors of link travel times and flows}$$

Model Results

Note effect of fuel consumption and CO production rate on CO emissions pattern. Examine changes in network geometry and Braess' paradox.