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Material Properties and Failure Phenomena
Up until now we have not said much about the way structures behave in the so-

called “real world”. Our focus has been on abstract concepts and pictures, with

generous use made of mathematics in the formulation and solution of problems.

There have been exceptions: We have talked about the properties of a rod, how we

could measure the stress at which it would yield. We have talked about linear

force/deflection relations and how we could measure the rod’s stiffness, k. But our

elaboration and application of the principles of equilibrium and compatibility of

deformation have not required any reference to the things of the material world:

Compatibility of deformation is a matter of the displacement of points, their abso-

lute and relative displacement (when we talk about strain). Equilibrium of force

and of moment concerns concepts that are just as abstract as displacements of

points and rotations of infinitessimal line segments - if not more so. Constructing

a free body diagram is an abstract, intellectual activity. No one goes out and actu-

ally cuts through the truss to determine the forces within its members.

In this chapter, we confront the world of different structural materials and their

actual behavior. We want to know how the stiffness, k, depends upon the actual

material constitution of our beam, or truss member, or concrete mix. We want to

know how great a weight we can distribute over the beam or hang from the nodes

of a truss before failure. We summarize our interests with two bullets:

• What properties characterize the behavior of a linear, elastic structural ele-
ment? What is the general form of the stress/strain relations for an isotro-
pic continuum?

• What conditions can lead to failure of a structure?

We begin with our elaboration of the constitutive relations for a continuum.

7.1  Stress/Strain Relations

We want to develop a set of stress/strain relations for a continuous body, equations

which apply at each and every point throughout the continuum. In this we will

restrict our attention, at least in this chapter, to certain type of materials namely

homogeneous, linear, elastic, isotropic bodies.

• Homogeneous means that the properties of the body do not vary from one
point in the body to another.
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• Linear means that the equations relating stress and strain are linear;
changes in stress are directly proportional to changes in strain (and the
other way around, too).

• Elastic means that the body returns to its original, undeformed configura-
tion when the applied forces and/or moments are removed.

• Isotropic means that the stress strain relations do not change with direction
at a point. This means that a laminated material, a material with a pre-
ferred orientation of “grains” at the microscopic level, are outside our field
of view, at least for the moment.

We have talked about stress at a point. We drew a

figure like the one at the right to help us visualize the

nature of the normal and shear components of stress at

a point. We say the state of stress is fully specified by

the normal components, σx, σy σz and the shear com-

ponents σxy=σyx, σyz=σzy σxz=σzx.

With these restrictions and a heavy dose of symme-

try, we will be able to construct a set of stress/strain

equations that will apply to many structural materials.

This we do now, performing a sequence of thought experiments in which we apply

to an element of stuff at a point each stress component in turn and imagine what

strains will be engendered, which ones will not. Again, symmetry will be crucial

to our constructions. We start by applying the normal stress component σ
x
 alone.

We expect to see some extensional strain εx. This we take as proportional to the

normal stress we apply, in accord with the second bullet above; that is we set

In this we have made use of another bit of real exper-

imental evidence in designating the constant of pro-

portionality in the relationship between the

extensional strain in the direction of the applied nor-

mal stress to be the elastic, or Young’s modulus, E.

We might not anticipate normal strains in the other

two coordinate directions but there is nothing to rule

them out, so we posit an εy and an εz.

Now εy and εz, because of the indifference of the material to the orientation of

the y and the z axis,– that is, from symmetry– must be equal. We can say nothing

more on the basis of our symmetrical thoughts alone.

At this point we introduce another real piece of experimental data, namely that

the material contracts in the y and z directions as it extends in the x direction due

to the applied σx. We write then, for the strains due to a σx:

The ratio of the lateral contraction in the y and z directions to the extension in

the x direction, the so called Poisson’s ratio is designated by the symbol ν. We
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have encountered the magnitude of the elastic modulus E for 1020, cold rolled

steel in the previous chapter. Poisson’s ratio, ν is new; it takes on values on the

order of one-quarter to one-half, the latter value characterizing an1 incompressible

material.

But what about the shear strains? Does σx engender any shear strains? The

answer is no and here symmetry is all that we need to reach this conclusion. The

sketch below shows two possible configurations for the shear strain γxy. Both are

equally possible to an unbiased observer. But which one will follow the applica-

tion of σx?

There is no reason why one or the other should occur.2 Indeed they are in con-

tradiction to one another; that is, if you say the one at the left occurs, I, by running

around to the other side of the page, or more easily, by imagining the bit on the

left rotated 180
o

about a vertical axis, can obtain the configuration at the right.

But this is impossible. These two dramatically different configurations cannot

exist at the same time. Hence, neither of them is a possibility; a normal stress σx

will not induce a γxy, or for that matter, a γxz shear strain.

By similar symmetry arguments, not provided here, we can rule out the possi-

bility of a γyz.We conclude, then, that under the action of the stress component σx

alone, we obtain only the extensional strains written out above.

Our next step is to apply a stress component σy alone. Now since the body is

isotropic, it does not differentiate between the x and y directions. Hence our task

is easy; we simply replace x by y (and y by x) in the above relationships and we

have that, under the action of the stress component σy alone, we obtain the exten-

sional strains

1. In fact, Poisson proved that, for an isotropic body, Poisson’s ratio should be exactly one-quarter. We claim
today that he was working with a faulty model of the continuum. For some relevant history on early nine-
teenth century developments in the continuum theories see Bucciarelli and Dworsky, SOPHIE GERMAIN, an
Essay in the Development of the Theory of Elasticity

2.  Think of the icon at the top as Buridan’s ass, the two below as bales of hay.

180
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The same argument applies when we apply the normal stress σz alone.

Now if we apply all three components of normal stress together, we will gen-

erate the extensional strains, and only the extensional strain.

One possibility remains: What if we apply a shear stress? Will this produce an

extensional strain component in any of the three coordinate directions? The

answer is no, and symmetry again rules. For example, say we apply a shear

stress, σxy. The figure below shows two possible, shortly to be shown impossible,

geometries of deformation which include extensional straining.

Now I imagine rotating the one on the left about an axis inclined at 45
o

as indi-

cated. I produce the configuration on the right. Try this with a piece of rectangular paper, a 3 by

5 card, or the like. But this is an impossible situation. The two configurations are

mutually contradictory. A like cause, in this case a positive shear stress at the

point, should produce a like effect. This is not the case. Hence, neither the defor-

mation of B nor of C is possible.

There remains one further possibility: that a σxy generates an extensional strain

in the x direction equal to that in the y direction. But this too can be ruled out by

symmetry3. We conclude then that the shear strain σxy, or σyz or σxz for that matter,

produces no extensional strains.

The expressions for the extensional strains above are not quite complete. We

take the opportunity at this point to introduce another quite distinct cause of the

3. This is left as an exercies for the reader.

εx 1 E⁄( ) σx ν σy σz+( )–[ ]⋅=

εy 1 E⁄( ) σy ν σx σz+( )–[ ]⋅=

and

εz 1 E⁄( ) σz ν σx σy+( )–[ ]⋅=

σxy

σxy

rotate 180o

45o

A

CB
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deformation of solids, namely a temperature change. The effect of a temperature

change- say ∆T - is to produce an extensional strain proportional to the change.

That is, for an isotropic body,

The coefficient of thermal expansion, α , has units of 1/
oC or 1/

oF and for most

structural materials is a positive quantity on the order of 10
-6

. Materials with a

negative coefficient of expansion deserve to be labeled exotic. They are few and

far between.

The equations for the extensional components of strain in terms of stress and

temperature change then can be written

In the above, we ruled out the possibility of a shear stress producing an exten-

sional strain. A shear stress produces, as you might expect, a shear strain. We state

without demonstration that a shear stress produces only the corresponding shear

strain. Furthermore, a temperature change induces no shear strain at a point. The

remaining three equations relating the components of stress at a point in a linear,

elastic, isotropic body are then.

Recall that σxy= σyx. In these, G, the shear modulus is apparently a third elastic

constant but we shall show in time that G can be expressed in terms of the elastic

modulus and Poisson’s ratio according to:

εx or y or z α∆T=

εx 1 E⁄( ) σx ν σy σz+( )–[ ] α∆ T+⋅=

εy 1 E⁄( ) σy ν σx σz+( )–[ ] α∆ T+⋅=

and

εz 1 E⁄( ) σz ν σx σy+( )–[ ] α∆ T+⋅=

γxy σxy G⁄=

γxz σxz G⁄=

and

γyz σyz G⁄=

G
E

2 1 υ+( )
---------------------=
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To proceed, we consider a special instance of a case of plane stress, i.e., one in

which the “z components” of stress at a point are zero. The special instance is

shown in the figure, at the left.

We then consider the stress components acting upon a plane inclined at 45o. We

relate the shear stress, σ’xy, on the inclined plane to the normal stress σx through

the appropriate transformation relation, namely:

With φ = 45o this gives

Doing the same for the strain component, γxy’,

gives        Now we apply the stress strain relations

to this last relationship and obtain

But from the transformation relationship between the stress components above,

we know that . For these last two relationships to be consistent, we

must have
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7.2 Properties of Ordinary Structural Materials

Contrary to my introductory remarks at the outset of this chapter, it seems we have

proceeded abstractly in our exploration of the constitution of structural materials.

The reason for this is that thinking things through is relatively cheap and inexpen-

sive work compared to doing actual experiments in the real world. If we can figure

out some ways in which our materials might, or must, behave by thinking

abstractly about continuity and symmetry, about stress and strain, about rotation

of axes - all the while making sure our analysis is logical and coherent - we have

established a solid basis for fixing the behavior of real materials in the real world.

This as long as our materials fit the assumptions of our model as set out in the bul-

lets at the outset of this chapter4. Still, it doesn’t give us the full picture, the full

story; eventually we have to go into the lab to pull apart the actual stuff. To get

our hands dirty, we explore how a bar in tension behaves.

Force/Deformation - Uniaxial Tension.

We have already said a few words about the failure of a truss member in ten-

sion – how a material like aluminum or steel will begin to yield or a more brittle

material fracture when the tensile stress in the member becomes too large in mag-

nitude. We want to say more now; in particular, we want to attend to the deforma-

tions that occur in a bar under uniaxial tension and look more closely at the

mechanisms responsible for either brittle fracture or the onset of yield.

The tension test5 is a standard test for

characterizing the behavior of bars under

uniaxial load. The test consists of pulling

on a circular shaft, nominally a centimeter

in diameter, and measuring the applied

force and the relative displacement of two

points on the surface of the shaft in-line

with its axis. As the load P increases from

zero on up until the specimen breaks, the

relative distance between the two points

increases from L
0

to some final length just

before separation. The graph at the right

indicates the trace of data points one might

obtain for load P versus ∆L where

4. Recall how difficulties arise if there is a misfit - if our model is not appropriate as was the case concerning the
behavior of the student in a chair on top of a table tilted up.

5. Standard tests for material properties, for failure stress levels, and the like are well documented in the Amer-
ican Society for Testing Materials, ASTM, publications. Go there for the description of how to conduct a ten-
sile test.

Lo L

P

P

A

∆L

P

∆L L Lo–=
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Now, If we were to double the cross-sectional area, A, we would expect to have
to double the load to obtain the same change in length of the two points on the surface.
That indeed is the case, as Galileo was aware. Thus, we can extend our results obtained
from a single test on a specimen of cross sectional area A and length L

0
to another speci-

men of the same length but different area if we plot the ratio of load to area, the tensile
stress, in place of P.

Similarly, if, instead of plotting the change in length, ∆L, of the two points, we
plot the stress against the ratio of the change in length to the original length between the
two points our results will be applicable to specimens of varying length. The ratio of
change in length to original length is just the extensional strain.

We, as customary, designate the tensile stress by σ and the extensional strain by
ε; We assume that the load P is uniformly distributed over the cross sectional area A and
that the relative displacement is “uniformly distributed” over the length L

0
. Both stress and

strain are rigorously defined as the limits of these ratios as either the area or the original
length between the two points approaches zero. Alternatively, we could speak of an aver-
age stress over the section as defined by

and an average strain as defined by

The figure below left shows the results of a test of 1020, Cold Rolled Steel.
Stress, σ is plotted versus strain ε. The figure below right shows an abstract representation
of the stress-strain behavior as elastic, perfectly plastic material.

Observe:

• The plot shows a region where the stress is proportional to the strain. The
linear relation which holds within this region is usually written

σ P A⁄≡

ε ∆L( ) Lo⁄≡

ε = ∆L/Lo

σ = P/A

0.002

 600MN/m2

ε

σ
σY

E

σ E ε⋅=
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where E is the coefficient of elasticity of 1020CR steel - 30 x 106 lb/in2.

• The behavior of the bar in this region is called elastic. Elastic means that
when the load is removed, the bar returns to its original, undeformed
configuration. That is L returns to L

0
. There is no permanent set6.

• The relative displacements of points — the strains in the elastic region —
are very small, generally insensible without instruments to amplify their
magnitude. To “see” a relative displacement of two points originally 100
mm apart when the stress is on the order of 400 Mega Newtons/m2 your
eyes would have to be capable of resolving a relative displacement of the
two points of 0.2 mm! Strains in most structural materials are on the order
of tenths of a percent at most.

• At some stress level, the bar does not return to its undeformed shape after
removing the load. This stress level is called the yield strength. The yield
strength defines the limit of elastic behavior; beyond the yield point the
material behaves plastically. In most materials definition of a nominal
value for the yield strength is a matter of convention. Whether or not the
material has returned to its original shape upon removal of the load
depends upon the resolution of the instrument used to measure relative
displacement. The convention of using an offset relies upon the gross
behavior of the material but this is generally all we need in engineering
practice. In the graphs above, we show the yield strength defined at a 2%
offset, that is, as the intersection of the experimentally obtained stress-
strain curve with a straight line of slope E intersecting the strain axis at a
strain of 0.002. Its value is approximately 600 MN/m2.

• Loading of the bar beyond the yield strength engenders very large relative
displacements for relatively small further increments in the stress, σ. Note
that the stress is defined as the ratio of the load to the original area; once
we enter the region of plastic deformation, of plastic flow, the bar will
begin to neck down and the cross sectional area at some point along the
length will diminish. The true stress at this section will be greater than σ
plotted here.

•  For some purposes, it is useful to idealize the behavior of the material in
tension as elastic, perfectly plastic; that is, the yield strength fixes the
maximum load the material can support. This fantasy would have the
material stretch out to infinite lengths once the yield strength was reached.
For most engineering work, a knowledge of yield strength is all we need.
We design to make sure that our structures never leave the elastic region.7

6. Note that linear behavior and elastic behavior are independent traits; one does not necessarily imply the
other. A rubber band is an example of an elastic, non-linear material and you can design macro structures that
are non-linear and elastic. Linear, inelastic materials are a bit rarer to find or construct.

7.  On the other hand, if you are designing energy absorbing barriers, machine presses for cold rolling or form-
ing materials and the like, plastic behavior will become important to you.
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Exercise 7.1

A steel bolt, of 1/2 inch diameter, is surrounded by an aluminum cylindrical
sleeve of 3/4" diameter and wall thickness, t= 0.10 in. The bolt has 32

threads/inch and when the material is at a temperature of 40oC the nut is
tightened one-quarter turn. Show that the uniaxial stresses acting in the
bolt and in the sleeve at this temperature are σbolt = 79 MN/m2, and
σsleeve = - 63 MN/m2where the negative sign indicates the aluminum sleeve
is in compression. What if the bolt and nut are cooled; at what temperature
might the bolt become loose in the sleeve?

Compatibility of Deformation

Compatibility of Deformation is best assured by playing

out a thought experiment about how the bolt and sleeve

go from their initial unstressed, undeformed state to the

final state. Think of the bolt and nut being separate from

the sleeve. Think then of turning down the nut one quarter

turn.

We show this state at the left, belo. ∆ is the distance trav-

eled in one quarter turn which, at 1/32 inch/turn is

∆ = 1/128 in

Next think of stretching the bolt out until we can once again fit the nut-bolt

over the aluminum sleeve, the latter still in its undeformed state. This is shown in

the middle figure below. Now, while stretching out the bolt in this way, replace the

aluminum sleeve8 then let go. The bolt will strive to return to its undeformed

length – the behavior is assumed to be elastic – while the aluminum sleeve will

resist contraction. The final state is shown at the right. The net result is that the

steel bolt has extended from its undeformed state a distance dbwhile the alumi-

num sleeve has contracted a distance ds. We see from the geometry of these three

8. Since this is a thought experiment we don’t have to worry about the details of this physically impossible
move.

1/2"

3/4"

L=6"

db

LL - ∆

∆

L - ∆

∆
ds

Turn nut down                                                              Stretch bolt - fit sleeve                             Release
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figures that we must have, for compatibility of deformation, which is

one equation in two unknowns.

Equilibrium

The figure at the right shows an isolation made by cutting
through the bolt and the sleeve at some arbitrary section
along the axis.

Note in this I have violated my usual convention.
I have taken the force in the aluminum as positive in
compression.

We let Fs be the resultant compressive force in the

sleeve, the sum of the distributed loading around the

circumference. Fb is the tensile force in the bolt. Like

the carton-tie-down exercise, these two internal forces are self equilibrating; there

are no external applied forces in the final state. We have

The normal stresses in the sleeve and the bolt are found assuming the resultant

forces of tension and compression are uniformly distributed over their respective

areas. Equilibrium then can be expressed as where the A’s are

the cross sectional areas of the bolt and of the sleeve.

 Constitutive Relations

Theconstitutive relationsare, foruniaxial loading,which is thecasewehaveonhand,

We have then a total of four equations for four unknowns – the two displace-

ments, the two stresses. Substituting the expressions for the stresses in terms of

displacements into the equilibrium allows me to write

which tells me the relative deformation as a function of the relative stiffness of the two
material. If the sleeve is “softer”, the bolt deforms less... etc.

With this, compatibility gives me a way to solve for the displacements in terms of ∆. I
obtain, letting

Values for the stresses are found to be σb = 79 MN/m2 and σs = 63 MN/m2
.

(Note: compressive)

ds db+ ∆=

db

ds

Fb Fs

Fb Fs– 0=

σb Ab⋅ σs As⋅=

σs Es ds L⁄( )⋅= and σb Eb db L⁄( )⋅=

db ds AsEs AbEb⁄( )⋅=

β AsEs AbEb⁄( )=

we have

ds ∆ 1
1 β+( )

-----------------= and db ∆ β
1 β+( )

-----------------=
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In computing these values, the elastic modulus for steel and aluminum were

taken as 200 GN/m2 and 70 GN/m2 respectively. Observe that, though the steel

experiences less strain, its stress level is greater in magnitude than that seen in the

aluminum.

7.3 Table of Material Properties

The tension test is the standard test for determine E, the elastic or Young’s

modulus. Test that load a cylindrical specimen in torsion are used to measure the

shear modulus G. Knowing E and G, Poisson’s ratio may be obtained from the

relationship we derived in the previous section.

What follows is a table giving the elastic properties and failure stresses in ten-

sion (and/or compression) for common structural materials. “Failure” means that

ordinarily you want to design your structure such that you do not come close to

this value under anticipated loading conditions.

The variety of materials included is meant to give the reader some idea of the

range of property values of different kinds of structural materials. The values

themselves are only meant to indicate orders of magnitude. In some cases, where

the range of property values for a material is so large due to differences in compo-

sition or quality of its fabrication, a range has been shown. And certainly the table

is not meant to be complete, nor should the values be used in detailed design

work.

     Material Specific Elastic Modulus    Failure Stress      α
 Gravity 106  psi 109 N/m2 103 psi 106 N/m2 10-6 /oC

Al  2024-T3 2.7 10 70 60 400 23

Al  6061-T6 2.6 10 70 40 280 23

Al 7075-T6 2.7 10 70 80 550 23

Concrete 2.3 3 20 3 - 6a 20 - 40 7-12

    High Strength 2.3 3 - 5 20 - 35 5-12 35 - 80 7-12

Copper 9 15 100 5 35 16

Glass Fiber 2.7 10 65 2000 15000 8

Iron (cast) 7 15 100 20-40 150-300 10

Steel High Strength 8 30 200 50-150 300-1000 14

Steel Structural 8 30 200 40-100 250-700 12

  e.g.,   AISI C1020 8 30 200 85 600 12

Titanium 5 15 100 100 700 9

Wood (pine) 0.5 1.4 10 1 7
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In all of this, failure stress is no unique number; in contrast to the elastic mod-

ulus, E, which is safe to take as a single value across different varieties and com-

positions of a material9, the failure stress will vary all over the lot depending upon

composition, care and means of fabrication. Compare the yield stress of cold

rolled versus hot-rolled 1020 steel. Note too that one does not design to the failure

stress but to a level significantly less than the numbers in the table. A factor of
safety is always introduced to ensure that internal loads in the structure stay well

below the failure level.

7.4 Failure Phenomena

Failure comes in different guises, in different sizes, colors, shapes, and with dif-

ferent labels. We have talked about yielding, the onset of plastic flow of ductile
materials - materials which show relatively large, even sensible, deformations for

relatively small increases in load once the material is loaded beyond its yield
strength. If the excessive load is removed before complete collapse, the structure

will not wholly return to its original, undeformed configuration.

Although it is the tension test that is used to fix the limit of elastic behavior

and to define a yield strength, the mechanism for yielding is a shearing action of

the material on a microscopic level. We have seen how a tensile stress in a bar can

produce a shear stress on a plane inclined to the axis of the bar.

The figure shows the Mohr’s

Circle for a bar subjected to uniax-

ial tension. The maximum shear

stress occurs on planes oriented at

45o to the axis of the bar. Its value

is one-half the applied tensile

stress. This then can be taken as a

criterion for the onset of yield of a

ductile material: Whenever the

maximum shear stress at any point

within any element of a structure

exceeds one-half the applied tensile

stress at the yield point in a tension

test, the element will yield10

a. In Compression

9. Concrete is an exception. Indeed it is difficult to find a linear portion of the stress/strain data taken from a
specimen in compression.

10. In a general state of stress, the maximum shear stress is given by one-half the maximum difference of the
(three) principle stresses. In the uniaxial tension test, this is just one-half the tensile stress as shown in the fig-
ure.

σ'x
σ'xy

φ

W

σx

W    σyx

σxy

     σ

(σx,0)

(0,0)

σ'xy = σx/2

φ=45o
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Not all materials behave as steel or aluminum or ductile plastics. Some materi-

als are brittle. Load glass, cast iron, a brittle plastic, a carbon fiber, or concrete in

a tension test and they will break with very little extension. They show insensible

deformation all the way up to the fracture load. Recall the exercise in chapter 4

where we subjected a piece of chalk to torsion and how this generated a maximum

tensile stress on a plane inclined at 45o to a generator on the surface of the chalk.

Metals generally carry a tensile or compressive load equally well. Concrete

can not. Concrete generally can carry but one-tenth its allowable compressive load

when subject to tension. A different sort of test is required to measure the tensile

strength of concrete. (See the insert).

Values for the compressive and tensile failure stress levels depend upon the

quality and uniformity of the composition of the material. Recall how we assumed

our material was homogeneous. If this is not the case, then other features of the

In an indirect tension test of concrete,
a cylinder is loaded with
a distributed load along

σx = 2P/(πLD)

A compressive stress on planes orthogonal to A-A’
is also engendered at each point. This can be
shown to be equal to

r

D-r

Tension

P

   P

A

A’

σx

σy

diametrically opposed, sides
of the cylinder. These line
loads engender a uniform tensile
stress distributed within the
cylinder over the plane section
A-A', bisecting the cylinder -
except within the vicinity of the
circumference. This tensile stress
can be shown to be

where L is the length (into the page)
of the cylinder along which the
load P is distributed, and D is the
cylinder diameter.

σx = 2P/(πLD)[          - 1]D2

r (D - r)
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material must be taken into account. For example, in a composite material or

structural element - a member made up of two different materials11- careful atten-

tion must be paid to the interface of the different materials out of which the mem-

ber is made. We will consider some examples of composite structural elements in

our chapter on the behavior of beams.

Another violation of homogeneity can prove disastrous: If the material, sup-

posed continuous and uniform, contains an imperfection e.g., a microscopic crack,

unseen by the naked eye even if on the surface, then all bets are off. (Rather all

bets are on)! A crack can be the occasion for the magnification of stress levels in

its immediate neighborhood.

This is one good reason why you see fillets at

corners within a machined part. For example,

one would never make a tensile test specimen

in the shape shown at the top of the figure. The

sharp corners where the two cylinders of dif-

fering diameters meet would engender a stress

level at that junction significantly greater than

the tensile stress found at the middle of the

specimen, away from the junction.

A classic example of how a discontinuity within the interior of a material can

act as a stress raiser is the solution obtained from the theory of elasticity for the

stress field around a hole in a thin plate.

The figure at the right shows the effect of a

circular hole on the stress component σx engen-

dered in a thin plate subjected to a uniform tensile

stress in the x direction. We show only the normal

stress component σx acting on an x face which is a

continuation of the vertical diameter of the hole.

The hole gives rise to a stress concentration three

times the magnitude of the uniformly applied ten-

sile stress12.

So far in our discussion we have been con-

cerned with static loading conditions, i.e., we

determine the internal stresses and static dis-

placements due to loading - such as a dead weight. But some failure phenomena

take time to develop. Even if there is no perceptible dynamic displacement or

motion, materials age - like you and me - with the passage of time. Material prop-

erties and modes of failure also may depend upon temperature. What may be duc-

tile at room temperature will be brittle at low temperatures. At high temperatures,

11. Think of fiber reinforced skies, poles for pole vaulting, frames of tennis racquets and steel reinforced con-
crete slabs or beams.

12. Reference: Timoshenko and Goodier, Theory of Elasticity, McGraw-Hill, N.Y  Third Edition 1970.
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still well below the melting point, materials will creep – they will continuously

deform at a constant load.

A material can fail in fatigue: Under continual cycling through tension then

compression, a material will fail well below the yield strength or fracture stress

witnessed in a tension test. Here the number of cycles may be large, on the order

of thousands. But dynamic excitation of a structure can lead to failure in but a few

cycles if the excitation drives a resonant mode of the system. Think of the Tacoma

Narrows Bridge where aerodynamic excitation at the resonant frequency of a tor-

sional mode of the structure led to ever increasing amplitude of vibration and the

eventual spectacular collapse of the span. Before this failure event, aerodynamics

and structures were the concerns of two different worlds13.

Failure often occurs where you are not looking for it. If you spend all of your

time doing models of structures made up of a large number of elements and focus

solely on stress levels within the elements and pay little attention to the way the

members are joined together and/or fixed to ground you are headed for trouble, for

failure often occurs at joints. The Hyatt Regency walkway collapse is an unfortu-

nate example.

Some failure phenomena are “macro”; they require more than the consideration

of the state of stress at a point. Buckling is of this nature. We will study the buck-

ling of beam-columns in the last chapter.

When we address the possibility of failure, inspection and testing become a

necessity. Here we move from the abstract world of the theory of elasticity to the

world of empirical data, manufacturers’ specifications, of codes and traditional

ways of fabrication and assembly. The problem is that in the design of the new and

innovative structure, there is always the possibility that the codes and regulations

and traditional ways of ensuring structural integrity do not exactly apply; some-

thing differs from the norm. If after a careful reading of existing code, any ques-

tion remains, a full test program might be called for.

13. Except within the world of aerospace engineering where the coupling of aerodynamics and structural behav-
ior were well attended to in the design of airfoils.
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Design Exercise 7.1

A solid circular steel shaft of diameter 40 mm is to be fitted with a thin-walled

circular cylindrical sleeve, also made of steel. In service the system is to serve as

a stop, halting the motion of another fitted, but freely moving cylindrical tube

whose inner radius is slightly larger than the outer radius of the solid shaft. The

stopping sleeve is to remain in fixed location on the solid shaft for all axial loads

less than some critical value of the force F shown in the figure. That is, for F<
50kN. If F exceeds this limit the sleeve is to frictionally break free and allow the

sliding cylinder to continue moving. along the shaft.

It is proposed to fasten the sleeve to the shaft by means of a shrink fit. The ini-

tial inner radius of the sleeve is to be made slightly less than the initial outer

radius of the shaft. The sleeve is then heated to a temperature not to exceed

∆Tmax = 250oC so that its heat-treatment is not affected. The hot sleeve is then

slipped over the shaft and positioned as desired. When the sleeve cools down, the

radial misfit between the shaft outer radius and the sleeve’s unstressed inner

radius will generate sufficient mechanical interaction between the two so that the

stopping and break-away functions can be fulfilled.

Size the sleeve.

40mm Fsteel
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7.5 Problems

7.1 Hoop #1 is enclosed within hoop #2. The two are made of different

materials, have different thicknesses but the same width (into the page). They are

shown in their unstressed state, just touching. Show that after tightening the bolt

at the top of the assembly and closing the gap, ∆, to zero, the stress in the outer

hoop is tensile and has magnitude F/(bt1) while the stress in the inner hoop is

compressive and has magnitude F/(bt2). In these t1 and t2 are the thicknesses,

   F = k1k2∆/(k1+k2)

where

      k1 = (bt1)E1/L1        and           k2 = (bt2)E2/L2

What if an internal pressure is applied to the inner hoop? When will the stress

in the inner hoop diminish to zero? What will be the hoop stress in the outer hoop

at this internal pressure?

7.2 The thin plate is a composite of two materials. A quarter inch thick, steel,

plate is clad on both sides with a thin (tal = 0.005 in), uniform, layer of aluminum.

The structure is stress-free at room temperature. Show that the stresses generated

in the two materials, when the temperature changes an amount ∆T, may be

approximated by

σal  = (α st - αal)Eal ∆T/(1-ν)    and σst = -(2tal/tst)(α st-αal)Eal∆T/(1-ν)

At what temperature will the clad plate begin to plastically deform? Where?

R

∆

#1

#2



Material Properties and Failure Phenomena                                                   217
7.3  Two cylindrical rods,

of two different materials are

rigidly restrained at the ends

where they meet the side

walls. The system is subject to

a temperature increase ∆T

How must their properties be

related if the point at which

they meet is not to move left

or right?

If material #1 is steel and #2 is aluminum, what more specifically can you say?

E1 = 200 GPa    steel

E2 = 70 GPa      aluminum α1 = 15 e-06  /oC α2 = 23 e-06  /oC

A1, E1, L1α1

A2, E2, L2α2




