1.85 WATER AND WASTEWATER TREATMENT ENGINEERING HOMEWORK 3

Question 1 (6 points)

A wastewater was tested in a settling column test with the following results in terms of suspended sediment concentration:

At t = 30 minutes		At t = 60 minutes			At t = 90 minutes	
Depth below surface, h (cm)	Concentration remaining, c/c ₀	Depth below surface, h (cm)	Concentration remaining, c/c ₀		Depth below surface, h (cm)	Concentration remaining, c/c ₀
38	0.23	34	0.05		32	0.03
118	0.81	114	0.46		112	0.23
198	0.94	194	0.73		192	0.52
278	0.97	274	0.86		272	0.70
358	0.98	354	0.92		352	0.83

- a. What type of settling is indicated by these data? (2 points)
- b. This particular wastewater is proposed to be treated in a rectangular sedimentation tank having a detention time of 2 hours and a depth of 4 meters. Estimate the percent of suspended sediments that will be removed. (2 points)
- c. If the wastewater flow rate is 7,500 m³/day, what needs to be the area and volume of the sedimentation tank? (2 points)

Question 2 (2 points)

The city of Hong Kong has a dual water-supply system that provides freshwater for drinking and bathing, and salt water for flushing toilets. At the Hong Kong wastewater treatment plant, as in most other wastewater treatment plants, wastewater is passed through a primary clarifier to settle out suspended solids. The Hong Kong plant achieves greater removal in their primary clarifier than most plants elsewhere in the world. Why?

Question 3 (2 points)

A rectangular sedimentation basin is to be designed for a flow of 1.0 mgd (million gallons per day) using a 2:1 length:width ratio, an overflow rate of 0.00077 fps (feet per second), and a detention time of 3.0 hr. What are the dimensions of the basin?

Solution to Homework 3, Question 1

Straight removal efficiency lines indicate discrete particle settling.

Solution to Homework 3, Question 1

Detention	Depth	Conc.	Settling
time		remaining	velocity
(min)	(cm)		(cm/min)
t	Z	c/c ₀	V
30	38	0.23	1.3
30	118	0.81	3.9
30	198	0.94	6.6
30	278	0.97	9.3
30	358	0.98	11.9
60	34	0.05	0.6
60	114	0.46	1.9
60	194	0.73	3.2
60	274	0.86	4.6
60	354	0.92	5.9
90	32	0.03	0.4
90	112	0.23	1.2
90	192	0.52	2.1
90	272	0.70	3.0
90	352	0.83	3.9

Fraction removed	from Equatio	n 9.30. pa.	230. of Re	vnolds and	Richards
1 1001011 101110100	nom Equato	n 0.00, pg.	200, 01100	ynolao ana	1 tion at ao

Fraction removed = 0.25 + 0.38 Fraction removed = 0.63

Alternative calculation using graph and formula from Lecture 6, page 18

R	h	Δh	Rave	e ∆h	∆h/h _n * Rave	
	100	0				
	90	100	100	95	23.8	
	70	190	90	80	18.0	
	50	230	40	60	6.0	
	40	325	95	45	10.7	
	30	370	45	35	3.9	
	26	400	30	28	2.1	
			Sum		64.5	
Percent remo	ved =	64.5 %				

 $T_R = 2$ hours H = 4 m $V_0 = \frac{4}{2} \frac{m}{hr} = 2 \frac{m}{hr}$ overflow rate $= 3.3 \frac{cm}{min}$

Fraction settled is

Ь.

$$(1-F_o) + \int_{0}^{F_o} \frac{V}{V_o} dF$$

 $F_0 = 0.75$ for $V_0 = 3.3$ from graph

Can approximate integral from graph of C/Co vs V since it is pretty close to a triangle

 $\int_{0}^{F_{0}} \frac{y}{v_{0}} dF \simeq 0.38$

Fraction removed = (1-0.75) + 0.38

= 0.63

c.

$$V_{o} = \frac{4 n}{2 hr} = 2 \frac{m}{hr} = 48 \frac{m}{d}$$

$$T_{0} = 2 hr = \frac{\forall}{@}$$

$$Q = 7500 \text{ m}^{3}/d \implies \forall = T_{0} Q$$

$$= \frac{2}{24} \text{ day } 1500 \frac{m^{3}}{d}$$

$$= 625 \text{ m}^{3}$$

$$V_{0} = \frac{Q}{A_{p}} = 48 \text{ mld} \implies A_{p} = \frac{Q}{V_{0}}$$

$$= \frac{7500 \text{ m}^{3}/d}{40 \text{ m/d}}$$

$$= 156 \text{ m}^{2}$$
Ferhaps $5 \text{ m x } 30 \text{ m}$

1.85 WATER AND WASTEWATER TREATMENT ENGINEERING HOMEWORK 3

Question 2 (2 points)

The city of Hong Kong has a dual water-supply system that provides freshwater for drinking and bathing, and salt water for flushing toilets. At the Hong Kong wastew ater treatment plant, as in most other wastewater treatment plants, wastewater is passed through a primary clarifier to settle out suspended solids. The Hong Kong plant achieves greater removal in their primary clarifier than most plants elsewhere in the world. Why?

Answer

The sea water increases the electrical conduct ivity of the water and thereby acts as a coagulant, enhancing the efficiency of sedimentation process.

Question 3 (2 points)

A rectangular sedimentation basin is to be designed for a flow of 1.0 mg d (million gallons per day) using a 2:1 length:width ratio, an overflow rate of 0.00077 fps (feet per second), and a detention time of 3.0 hr. What are the dimensions of the basin?

Answer Overflow rat 0.000 ÷ Sec gpd 500 Ēŧ 1,000,000 apd apd $2W^{2} =$ L = 2W = 64 ft10 32 ft