1.85 WATER AND WASTEWATER TREATMENT ENGINEERING HOMEWORK 5

Question 1 (4 points)
The water defined by the analysis given below is to be softened by excess-lime (and soda ash) treatment.
a. Sketch an meq/L bar graph (1 point).
b. Calculate the softening chemicals required (3 points).
c. Draw a bar graph for the softened water after recarbonation and filtration, assuming that 80% of the alkalinity is in the bicarbonate form (1 point).

CO_{2}	$8.8 \mathrm{mg} / \mathrm{L}$
Ca^{2+}	$40.0 \mathrm{mg} / \mathrm{L}$
Mg^{2+}	$14.7 \mathrm{mg} / \mathrm{L}$
Na^{+}	$13.7 \mathrm{mg} / \mathrm{L}$

$\mathrm{ALK}\left(\mathrm{HCO}_{3}{ }^{-}\right)$	$135 \mathrm{mg} / \mathrm{L}$
$\mathrm{SO}_{4}{ }^{-}$	$29.0 \mathrm{mg} / \mathrm{L}$
Cl^{-}	$17.8 \mathrm{mg} / \mathrm{L}$

ANSWER - See solution to follow

Solution for Homework 5, Problem 1

Cations				Anions					
Ion	MW	Charge	Conc	Equiv.	Ion	MW		Conc	Equiv.
			$(\mathrm{mg} / \mathrm{L})$	$(\mathrm{meq} / \mathrm{L})$				$(\mathrm{mg} / \mathrm{L})$	$(\mathrm{meq} / \mathrm{L})$

CO_{2}	44	2	8.8	0.40

Ca^{2+}	40	2	40	2.00	$\mathrm{Alk}\left(\mathrm{HCO}_{3}{ }^{-}\right)$	50	1	135	2.70
Mg^{2+}	24.3	2	14.7	1.21	$\mathrm{SO}_{{ }^{2-}}$	96	2	29	0.60
Na^{+}	23	1	13.7	0.60	Cl^{-}	35.5	1	17.8	0.50

Check charge balance:
Total cations: $3.81 \quad$ Total anions: 3.81
a. Sketch an meq/L bar graph

Note: scale is approximate but numbers are accurate to two digits.

Hardness $=$	$3.21 \mathrm{meq} / \mathrm{L}$	$160 \mathrm{mg} / \mathrm{L}$ as CaCO_{3}
Strong bases $=$	$3.81 \mathrm{meq} / \mathrm{L}$	$190 \mathrm{mg} / \mathrm{L}$ as CaCO_{3}
Strong acids $=$	$1.11 \mathrm{meq} / \mathrm{L}$	$55 \mathrm{mg} / \mathrm{L}$ as CaCO_{3}
Alk =	$2.70 \mathrm{meq} / \mathrm{L}$	$135 \mathrm{mg} / \mathrm{L}$ as CaCO_{3}
Carb hardness =	$2.70 \mathrm{meq} / \mathrm{L}$	$135 \mathrm{mg} / \mathrm{L} \mathrm{as} \mathrm{CaCO}_{3}$
Ca carb hardness =	$2.00 \mathrm{meq} / \mathrm{L}$	$100 \mathrm{mg} / \mathrm{L} \mathrm{as} \mathrm{CaCO}_{3}$
Mg carb hardness =	$0.71 \mathrm{meq} / \mathrm{L}$	$36 \mathrm{mg} / \mathrm{L}$ as CaCO_{3}
Non-carb hardness =	$0.51 \mathrm{meq} / \mathrm{L}$	$25 \mathrm{mg} / \mathrm{L}$ as CaCO_{3}
Mg NCH =	$0.51 \mathrm{meq} / \mathrm{L}$	$25 \mathrm{mg} / \mathrm{L}$ as CaCO_{3}

b. Calculate the softening chemicals required

Lime requirement:

Component		mg / L as CaCO_{3}	meq/L	Lime as CaCO_{3}
Lime for CO_{2}	CO_{2}	20	0.40	20
Lime for CaCH	$\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$	100	2.00	100
Lime for Mg CH	$\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}$	36	0.71	71
Lime for non-carb hardness	NCH	25	0.51	25
Total lime needed	Total	181	3.62	216
Total lime as CaO			mg / L as C	
Plus excess lime		35	mg / L as C	
Total lime including excess		156	mg / L as C	

[^0]
Solution for Homework 5, Problem 1

Soda ash requirement:

Component		mg / L as CaCO_{3}	$\mathrm{meq} / \mathrm{L}$	Soda as CaCO_{3}
Soda for non-carb hardness	NCH	25	0.51	25
Total soda ash needed	Total	25	0.51	25
Total soda ash as $\mathrm{Na}_{2} \mathrm{CO}_{3}$		27	mg / L as $\mathrm{Na}_{2} \mathrm{CO}_{3}$	

c. Draw a bar graph for the softened water after recarbonation and filtration, assuming that 80% of the alkalinity is in the bicarbonate form

Question 2 (2 points)
A small community has used an unchlorinated ground-water supply containing approximately $0.3 \mathrm{mg} / \mathrm{L}$ of iron and manganese for several years without any apparent iron and manganese problems. A health official suggested that the town install chlorination equipment to disinfect the water and provide a chlorine residual in the distribution system. After initiating chlorination, consumers complained about water staining washed clothes and bathroom fixtures. Explain what is occurring due to chlorination.
ANSWER: Chlorine is a strong oxidizer and is oxidizing the iron and the manganese. The oxidized iron and manganese is relatively insoluble and forms precipitates. These precipitates cause the stains on fixtures and laundry. Apparently, before chlorination, the iron and manganese remained dissolved or as fine colloids and passed through the system without causing problems.

Question 3 (2 points)
A wastewater containing phenol at a concentration of $0.4 \mathrm{mg} / \mathrm{L}$ is to be treated by granular activated carbon. Batch tests have been performed in the laboratory to determine the relative adsorption of phenol by GAC. Testing entails adding a mass of carbon to $\mathrm{V}=1$ liter of the $0.4 \mathrm{mg} / \mathrm{L}$-solution, allowing the solution to reach equilibrium over 6 days, and then measuring the resulting equilibrium concentration of phenol. Results are shown in the table below. Develop a Freundlich isotherm to fit these data.

Mass of carbon, $M(\mathrm{gm})$	Initial conc., $\mathrm{C}_{0}(\mathrm{mg} / \mathrm{L})$	Equilibrium conc $\mathrm{C}_{\mathrm{e}}(\mathrm{mg} / \mathrm{L})$
0.52	0.400	0.322
2.32	0.400	0.117
3.46	0.400	0.051
3.84	0.400	0.039
4.50	0.400	0.023
5.40	0.400	0.012
6.67	0.400	0.0061
7.60	0.400	0.0042
8.82	0.400	0.0023

Answer: From spreadsheet calculation:

Data tabulation:

Mass of carbon, M	Initial conc. C_{0}	$\begin{gathered} \text { Equil. conc } \\ C_{A} \end{gathered}$	$\mathrm{C}_{0}-\mathrm{C}_{\mathrm{A}}$	V * $\left(\mathrm{C}_{0}-\mathrm{C}_{\mathrm{A}}\right)$	$\mathrm{q}_{\mathrm{A}}=\mathrm{V}\left(\mathrm{C}_{0}-\mathrm{C}_{\mathrm{A}}\right) / \mathrm{M}$	$\log \mathrm{C}_{\mathrm{A}}$	$\log \mathrm{q}_{\mathrm{A}}$
(g)	(mg/L)	(mg/L)	(mg/L)	(mg)	(mg / g)		
0.52	0.4	0.322	0.078	0.078	0.150	-0.492	-0.824
2.32	0.4	0.117	0.283	0.283	0.122	-0.932	-0.914
3.46	0.4	0.051	0.349	0.349	0.101	-1.292	-0.996
3.84	0.4	0.039	0.361	0.361	0.094	-1.409	-1.027
4.5	0.4	0.023	0.377	0.377	0.084	-1.638	-1.077
5.4	0.4	0.012	0.388	0.388	0.072	-1.921	-1.144
6.67	0.4	0.0061	0.3939	0.3939	0.059	-2.215	-1.229
7.6	0.4	0.0042	0.3958	0.3958	0.052	-2.377	-1.283
8.82	0.4	0.0023	0.3977	0.3977	0.045	-2.638	-1.346
Mass of adsorbent		Liquid phase concentration	Change in conc. in water	Mass adsorbed to carbon	Solid phase concentration		

Data are plotted below and fall more or less on a straight line. Determine approximate slope from first and last points on line: (Note that linear regression would be more accurate.)

Slope $=1 / n=\left[\left(\log q_{A, \max }\right)-\log \left(\mathrm{q}_{\mathrm{A}, \text { min }}\right)\right] /\left[\log \left(\mathrm{C}_{\mathrm{A}, \max }\right)-\log \left(\mathrm{C}_{\mathrm{A}, \min }\right)\right]$
$1 / n=$
0.243

Next determine $K_{F}=q_{A} / C_{A} / n$ for each data point and find average K_{F} value:

Mass of carbon, M	Equil. conc C_{A}	q_{A} $=\mathrm{V}\left(\mathrm{C}_{0}-\mathrm{C}_{\mathrm{A}}\right) / \mathrm{M}$	$\mathrm{K}_{\mathrm{F}}=\mathrm{q}_{\mathrm{A}} / \mathrm{C}_{\mathrm{A}}{ }^{1 / \mathrm{n}}$
(g)	$(\mathrm{mg} / \mathrm{L})$	$(\mathrm{mg} / \mathrm{g})$	
0.52	0.322	0.150	0.198
2.32	0.117	0.122	0.206
3.46	0.051	0.101	0.208
3.84	0.039	0.094	0.207
4.5	0.023	0.084	0.210
5.4	0.012	0.072	0.211
6.67	0.0061	0.059	0.204
7.6	0.0042	0.052	0.197
8.82	0.0023	0.045	0.198
	Average $=$		

```
Data plot:
```


Question 4 (2 points)
An ion exchange resin is used to remove nitrate from a water supply with the ionic concentrations shown below. The total resin capacity is 1.5 equivalents per liter of resin.

Cations	meq/L
Ca^{2+}	1.4
Mg^{2+}	0.8
Na^{+}	2.6

Anions	meq/L
$\mathrm{SO}_{4}{ }^{2-}$	0.0
Cl^{-}	3.0
$\mathrm{NO}_{3}{ }^{-}$	1.8

d. Do the anions and cations balance? (1 point).
e. What volume of water can be treated with each liter of resin? (2 points)
f. Qualitatively, how would your answer differ if the concentrations of Cl^{-}and SO_{4}^{-} were reversed? (1 point).

Answer:

a. \quad cations $=4.8 \mathrm{meq} / \mathrm{L}$ Eanions $=4.8 \mathrm{meq} / \mathrm{L} \quad$ Charges balance!.
b. Each liter of resin can remove 1.5 equivalents. Only chloride is present in quantity and nitrate is well above chloride in ion exchanger preference series shown in lecture, therefore can ignore exchange of ions other than nitrate:

Concentration of nitrate $=1.8 \times 10^{-3} \mathrm{eq} / \mathrm{L}$
Volume treated $=1.5 \mathrm{eq} / 1.8 \times 10^{-3} \mathrm{eq} / \mathrm{L}=833$ liters
C. Since SO_{4} is above NO_{3} in the preference series, if SO_{4} were present rather than $\mathrm{Cl}, \mathrm{SO}_{4}$ would be adsorbed instead of NO_{3}. There were would be far less, if any, NO_{3} adsorption. Another resin or much greater amount of resin would be needed.

[^0]: * Note Mg carbonate hardness requires double lime dose

