DISTRIBUTION / COMMERCIALIZATION

21 w. 789

Topics

\square Research labs: from publishing to product (Andy)
\square Old distribution means
\square Current State of App Stores
\square Scalability / Cloud Computing
\square Instrumentation
\square Public Betas
\square Ethics
\square Reliability of data

Research Labs Today...

Andy Aftelak

- Director of Research, Motorola Mobility

Distributing a mobile app - 2005

\square Official way = Carrier Portals
\square Small number of (J2ME or BREW) applications available for download from the phone

- Mostly games
\square Also apps like Shazam
\square Usually a large revenue share with carrier
\square Small number of apps got approved

Alternate distribution means - 2005

\square Posting JAD/JAR on a website
\square Apps not signed by carriers

- Limits APIs that can be used
- No Cell ID, no images larger than VGA on most handsets
\square Users must find apps on websites and download
\square Sometimes complicated install process on phone
\square Successful examples:
- GMail, Google Maps for Mobile
\square Moderately successful examples:
- Radar, ZoneTag

Distribution Today

\square App Stores
\square Ad Hoc
\square Compiled application delivered as a download or file transfer to phone
\square Android .apk file, Apple .app file + MobileProvisioning file
\square Phones need to enable the download of non-market apps
\square Debug Builds
\square Loaded directly from developer computer
\square Phones must have a debug mode turned on (Android) or special certificate installed (Apple)

App Stores today

\square One per Mobile OS
\square Controller by OS maker (new Amazon Android market)
\square Large (100s of thousands of apps, millions of users)
\square Variable submission process/oversight by OS maker
\square Free or 30% cut to OS maker

Apple App Store

\square Largest (as of 20 Oct 2010)
\square 300,000+ apps
\square 7B downloads
\square Apps must be reviewed and approved by Apple
\square Must enter NDA with Apple
\square All communication with them is under NDA including terms of rejection
\square One week to 9 month process each time app is updated
$\square \$ 99 /$ year fee and $70 / 30$ revenue split

Google Marketplace

\square 156,000 apps
\square 2B downloads
\square Any app that's submitted gets instantly published to store
\square Google can remove malicious apps
$\square \$ 25$ one time fee to publish apps
$\square 70 / 30$ revenue split

Cydia

\square App store for Jailbroken iPhones
\square Largely contains content forbidden by apple (Themes, ringtones, etc.)
\square Only 2541 apps (non theme/ringtone) (McMillan ‘11)

Apple App Store vs. Cydia

\square Game distributed by McMillan et al
\square Less populated store gives more exposure over time

Other Stores

\square App World (Blackberry)
$\square 9800$ apps, 250M downloads
\square App Catalog (HP Palm)
$\square 5000$ apps, 2.6 M downloads
\square Windows Marketplace (WM7)

- 1300 apps
\square Amazon App Store
\square 2ndary market for Android
\square Does not work on AT\&T phones (restrict APK files not signed by Google)

Ad Hoc deployments

\square On Android, just post an APK file on the web and send out a link
\square Will not work with phones on AT\&T (block non-market apps)
\square No limit on install base
\square On iPhone
\square Need to get UDIDs from each device ahead of time
\square Generate certificate with those UDIDs on the web

- Build app with that certificate
- Distribute cert and app to participants, must load with iTunes
\square Limited to 100 users per year

Complex choice of platform and market

\square What users/segment do you want to reach?
\square Cydia heavily male and older compared to App Store
\square Android more early adopter than iPhone (but changing)
\square How will you maintain visibility/popularity?
\square How will you release initial betas until launch is ready?
\square How often do you plan on updating your app?

Mobile Business Models

$\square 4$ Main Options
\square Free + ad supported (Angry Birds)
\square Pay to download (MLB At Bat)
\square Pay for a service on the web, mobile app is free (Netflix)
\square Free app with in-app payments (MLB At Bat Light w/ pay per game video streaming)

Paid or free?

Paid - how much?

Courtesy of Distimo. License: CC NC-BY-SA 3.0.

- Average Price All Paid Applications Average Price Top 100 Paid Appication Average Price Top 100 Grossing Applications

Paid? How much?

Price Distribution - Apple App Store (United States, November ' 10)

Ad Providers

\square Apple
\square iAd from Apple (60/40 split)
\square Professionally produced full-screen ads
\square Higher CPMs
\square Android

- Free to do whatever you want
\square Google provides AdMob
- 321 B impressions
- \$0.15-\$0.80 per 1000 impressions (variable, no control)
- 3-5 cents per click

Ad vs. Paid

\square Avg user views 5 screens (impressions) / day

$$
\text { - } \$ 0.50 / 1000 \text { * } 5=\$ 0.0025 / \text { user/day }
$$

\square Use app $2 x$ /week for a 18 months (until buy new phone)

- \$0.0025 * 2 * 4 * $18=\$ 0.36$
\square Compared to average price of $\$ 2.15$ (use app 860 times!)
\square But will likely get more users with free apps (400:1?)
\square So really just use app twice to make up price!

Ad vs. Paid

\square A different type of app - Game, in app for hour at a time
\square Assume new ad each minute, 60 ads/use $=\$ 0.03$
\square Play twice a week for a year $=\$ 3.12$

Case Study: Galaxy Impact game

\square Game was free, then tried to charge $\$ 0.99$ * 10/27: 1,377 (the first day on sale) * 10/28: 10,839 * 10/29: 13,110 * 10/30: 18,875 * 10/31: 18,556 * 11/01: 25,898 * 11/02: 28,390 * 11/03: 26,156 * 11/04: 18,182 * 11/05: 16,633 * 11/06: 14,883 * 11/07: 13,024 * 11/08: 10,928 * 11/09: 1,153 (started charging: 27 downloads PAID) * 11/10: 23 * 11/11: 20 * 11/12: 1,435 (free of charge again)

Galaxy Impact

$\square 220,000$ downloads $=\$ 550$ in revenue (400:1 @ \$0.99)
\square Currently making \$127/mo on ads
\square Findings:

1. Free downloads vs for fee downloads (\$.99) is 400:1 2. New downloads vs updates is about 3:1 3. If you decide to go with ad support, do it from the very beginning. 4. Updating does not help much 5. Ad revenue in the long run is higher than sales revenue 6. It's hardly a sustainable business for most common app developers (with average apps).

Usage over time

Paid Applications - Usage Over Time

Courtesy of Flurry Pinch Media. Used with permission.

Usage over time

How long do people use apps?

Engagement - Paid vs. Free

Engagement by Category

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Choosing a model

\square Tough decision that depends on many factors:
\square Number of ads per session
\square Frequency of use of app
\square Desire to pay for your type of app
\square Aesthetics

Scalability and Cloud Computing

Scalability

\square Why Cloud?
\square No capital expenditure
\square Pay for resources you need, scale dynamically (and near infinitely) as you grow
\square Availability zones around the world

- Large Content Distribution Networks (CDNs)
- Host content on separate servers, reduce demand on application servers

Cloud Computing

\square Options

- Amazon EC2/S3
- Virtualized Linux (and windows) boxes in the cloud
- Load balancing services
- Up to developer to install and manage relevant software packages (can get a default LAMP instance)
- Alternately can use BeanStalk (grows totally dynamically)
- Google App Engine
- Python and Java services in the cloud
- No threads, no custom apps, no uploads over 200K
- Scalability and maintenance handled by Google
- Microsoft Azure
- APls into Windows Live, Sharepoint, CRM
- Hosted SQL Databases and code based on CLR

EC2 Instances

Small Instance - default*
1.7 GB memory

1 EC2 Compute Unit (1 virtual core with 1 EC2 Compute Unit)
160 GB instance storage
32-bit platform
I/O Performance: Moderate
API name: m1.small

Large Instance

7.5 GB memory

4 EC2 Compute Units (2 virtual cores with 2 EC2 Compute Units each)
850 GB instance storage
64-bit platform
I/O Performance: High
API name: m1.large

Extra Large Instance

15 GB memory
8 EC2 Compute Units (4 virtual cores with 2 EC2 Compute Units each)
1,690 GB instance storage
64-bit platform
I/O Performance: High
API name: m1.xlarge

EC2 pricing

US - N. Virginia US - N. California	EU - Ireland APAC - Singapore		Small instance $=\$ 61.20 / \mathrm{mo}$ Large $=\$ 244.80 / \mathrm{mo}$
Standard On-Demand Instances	Linux/UNIX Usage	Windows Usage	
Small (Default)	\$0.085 per hour	\$0.12 per hour	
Large	\$0.34 per hour	\$0.48 per hour	
Extra Large	\$0.68 per hour	\$0.96 per hour	
Micro On-Demand Instances	Linux/UNIX Usage	Windows Usage	
Micro	\$0.02 per hour	\$0.03 per hour	
High-Memory On-Demand Instances			
Extra Large	\$0.50 per hour	\$0.62 per hour	
Double Extra Large	\$1.00 per hour	\$1.24 per hour	
Quadruple Extra Large	\$2.00 per hour	\$2.48 per hour	
High-CPU On-Demand Instances			
Medium	\$0.17 per hour	\$0.29 per hour	
Extra Large	\$0.68 per hour	\$1.16 per hour	
Cluster Compute Instances		Data Transfer In	US \& EU Regions APAC Region
Quadruple Extra Large	\$1.60 per hour	All Data Transfer	\$0.10 per GB \$0.10 per GB
* Windows is not currently available for Cluster Compute Instances.		Data Transfer Out ***	US \& EU Regions APAC Region
		First 1 GB per Month	\$0.00 per GB \$0.00 per GB
		Up to 10 TB per Month	\$0.15 per GB \$0.19 per GB
		Next 40 TB per Month	\$0.11 per GB \$0.15 per GB
		Next 100 TB per Month	\$0.09 per GB $\$ 0.13$ per GB
		Over 150 TB per Month	\$0.08 per GB $\quad \$ 0.12$ per GB

Cost of the Cloud

\square Say you can support 15,000 users on "small" instance

- $\$ 61.20 / 15000=\$ 0.0041 /$ user $/$ month
\square Use app for 18 months: $\$ 0.073$
\square If expected ad revenue is $\$ 0.36$, that's not much profit
\square Need 3484 users to make $\$ 1000$ in 18 months
\square In game model ($\$ 3.12$ in ad revenue a year)
- Need 229 users to make $\$ 1000$ in 18 months
\square If charging $\$ 0.99$ ($\$ 0.70$ revenue)
\square Need 1612 users to make $\$ 1000$ in 18 months

Scalability

\square Reducing hits to the server
\square On-Device Cacheing
\square Keep data local
■ Download large data/videos/etc. on wifi
\square Conditional GETs to server
\square Leverage $3^{\text {rd }}$-party APIs directly from phone
\square Phone interfaces to FB, Twitter, Yelp, etc. directly

Scalability - Your Apps

\square Have you used a cloud computing infrastructure before? Which one? What was your experience?
\square Does your app have a web component?
\square What are the needs of this component? (database, transcoding, media storage, etc.)
\square What sort of cloud model would work best for your needs?

Instrumentation

\square Understanding application use and demographics with apps deployed in the wild
\square What data do you want to collect about use?
\square Screen load/hide
\square Key context (time/location/data that is displayed/search terms)
\square Actions initiated (phone calls/maps/text messaging/etc.)
\square Screen shots?

Instrumentation

\square Why do you want the data?
\square Improve UI navigation

- Add new features
- Remove/Hide unused features
\square Make claims about use
- Avg user spends x minutes a day in app
- See distribution of feature use
\square Marketing
- Find key demographics

Instrumentation

\square How can you instrument a mobile app?
\square Mobile + Server logging
\square Server generally logs all HTTP requests
\square Combine with logs from mobile of time spent on a screen, phone-specific actions taken
\square Mobile instrumentation
\square Save data to local DB or file
\square Periodically upload file (on app launch, as a background process, on app close, etc.)

Instrumentation (examples)

\square Motion Presence
\square Timestamp +

- App open
- Person view
- Call/Text Message
\square Saved to SD card, card analyzed by researchers
\square Family Stories
\square Timestamp + location +
- App open
- Notification show/hide
- Call/Text Message/View Map

Public Betas

\square Why do a public beta?
\square Learn more about adoption
\square Systems that require large network effects
\square Scale gracefully
\square Get feedback from lots of users on feature sets
\square Examples:
$\square \mathrm{Phi}^{\wedge} 2$
\square Spotisquare
\square ZoneTag

Issues with public betas

\square Security
\square System needs to be tightly locked down
\square Fix vulnerabilities to hackers
■ Good programming practice anyway

- Rarely done with quick and dirty prototypes
\square Scalability
\square Paying for additional server resources
\square Designing system for scalability
- Memcache, etc.
\square Finding users...

Getting initial users

\square Social Media
\square Facebook ads targeted towards target market segments
\square Twitter - getting retweeted by major blog, tech pundit
\square Other
\square Google Ad Words
\square Pay for placement in app stores
\square Update app - Android Market, show up under "latest" apps each time there is an update

Getting users

\square Has anyone here used Facebook or Twitter to find users for a project?
\square Worked? Not?
\square Has anyone farmed out tasks to Mechanical Turk? Participated in a Mechanical Turk task?
\square Has anyone run a public beta? Size? Success?

Ethics and Recruiting

\square What is a research study if it's released like a product to thousands of users in an app store?
\square How can we ensure that the many decades of work on ethical research practices is applied to this new kind of research? (or should we?)
\square How can we trust the data that we get from a large deployment and how does this data compare to what is traditionally gathered in an small-n study?

Topics

\square Research Validity
\square Recruiting
\square Quality of data
\square Ethics

- Informed Consent
\square Data Collection
\square Ending the "study"

Research Validity: Recruiting

\square In the small:
\square Recruit a diverse set of 10-12 users from different backgrounds/ages/genders
\square Likely all from one city
\square Usually meet in person
\square In the large:
\square Anyone can download
\square Demographics (if collected) are self-reported and unverified (Facebook login??)
\square Likely from all over the world

Recruiting: Benefits and Issues

\square Benefits
\square Larger N
\square More diverse geographically
\square Potentially more like "real" users
\square Issues
\square Possibly less diverse than if you had handpicked participants (aggregate results shown not to be trustworthy for use in general population)
\square Less trustworthy demographic data
\square Less understanding of use by very different user populations

Recruiting: What is the app?

\square Present as a research study
\square Probably get fewer users (perception that it will go away, in progress)
\square Probably different demographic (younger, geekier, male)
\square Present as a "real" app
\square Provide some benefit to user
\square Need to be more "polished" - high expectations!
\square How is this different from Facebook?
■ Facebook Data has all sorts of "research" trends pulled from usage

Example from Facebook Data Team

Quality of Data

\square In the small:
\square Voicemail diaries
\square Interviews with participants throughout study
\square Ability to check logs with diaries for all participants
\square In the large:
\square Lots of server logs
\square User comments/tweets/surveys
\square Maybe a few interviews over email/Skype with some users

Quality of Data: Benefits and Issues

\square Benefits
\square Lots of usage data from real use in the world
\square Ability to create more realistic usage models
\square Issues
\square Less contextual data about use
\square Lack of an understanding of why usage is the way it is
\square Hard to get random users interested in in-depth interviews or diary logging

Informed Consent: The "Other" Milgram Study

\square Talked about "familiar strangers" last class
\square More infamous experiment: "Experiment on obedience to authority figures"
\square Learner answers questions asked by the Teacher (participant)
\square When Learner gets an answer wrong, Experimenter tells Teacher to shock them
\square Increasing levels of electric shock (simulated, but T doesn't know this)

Milgram's effects on research ethics

\square Large amount of stress put on participants
\square They had no idea what they were getting into, possible risks
\square Led to the creation of consent forms and Institutional Review Boards nationwide

Ethics: Informed Consent

\square In the small:
\square IRB approval

- Informed Consent form explaining purpose of research, benefits and risks, explicit consent for data collection and reuse
\square In the large:
\square A EULA that no one reads
\square No ability to sit down and explain to users what they are getting into, answer questions, address concerns, etc.

EULAs

\square Best to consult with a lawyer
\square Important to make sure users understand what data you are collecting
\square Protect yourself by making terms of the service clear
\square Some 10+ pages of text
\square Does anyone read them?
\square Would knowing what they are doing prohibit installs? Good et al - YES!
\square Our study of 222 users showed that providing a short summary notice, in addition to the End User License Agreement (EULA), before the installation reduced the number of software installations significantly. We also found that providing the short summary notice after installation led to a significant number of uninstalls.

Example EULA - TuVista

TuVista End User License Agreement
PLEASE READ THESE TERMS OF USE CAREFULIY before using this Application. if you do not agree to these terms, please do not use the application.
INTENDED AUDIENCE/USE:
Motorola, Inc. ("Motorola") provides this Application to you, subject to these Terms of Use. This Application is intended for the lawful use of Motorola's customers, employees and members of the general public who are over the age of 13 , and citizens of the United States or Canada.

ACCEPTANCE OF TERMS:

 RESTRICTIONS ON USE OF APPLLCATION:

TRADEMARKS AND SERVICE MARKS:
There may be proprietary logos, service marks, trademarks, slogans and product designations found on or in the Application. Motorola is not granting you a license to use them in any fashion.
LINKS TO THIRD PARTY APPLICATIONS:

 hyperrext links to third party Sites or information are provided solely as a convenience to you, and do not constitute or imply an endorsement, sponsorship or recommendation of, or affiliction with the third party or its products and services. Motorola makes no representation or warranty
services, and you agree that Motorola shall not be responsible or liable, directly or indirectly, for any damage or loss caused or alleged to be caused by or in connection with use of or reliance on any such third-party Content, products or services available on or through any such Site.
 with regard to its use or functionality. Motorola assumes no responsibility for customer support for use of third party services.
Motorola does not track or monitor usage of the Application and your interaction with any Site. Motorola may obtain general Site usage information from a Provider if such information is allowed to be collected by a Provider under the terms of usage that you have agreed to with the Provider.
FEES AND PAYMENTS:
 party sire.
Be aware that your cellular service provider may charge fees for access, transport, and uploading of information or content. You are solely responsible for charges incurred through your cellular service provider. Motorola is not responsible for charges incurred through your cellular service provider.
notices:
Notes to you may be made via either email or regular mail. Motorola may also provide notices of changes to the Terms of Use or other matters by such means.
DISCLAIMER OF WARRANTY:

 THE EXCLUSIONS OR LIMIT
CREATE ANY WARRANTY.
LIMITATION OF LIABLITY:

 TORT OR OTHERWISE, ARISING OUT OF YOUR USE OF THIS APPLICATION, ITS CONTENT OR LINKS, SHALL NOT EXCEED THE AMOUNT YOU PAID (IF ANY) FOR THE APPLLCATION.
REVIIIONS:
 Provider Site.
TERMINATION:
You agree that Motorola, in its sole discretion, may terminate or restrict your use of the Application or access to a Provider Site (or any part thereof) for any reason, including, without limitation, that Motorola believes you have violated or acted inconsistently with the letter or spirit of these Terms of Use.
GENERAL INFORMATION:

 convenience only and have no legal or contractual effect.

VIOLATIONS:
Please report any violations of these Terms of Use to Motorola at hitp://www.motorola.com/feedback

Graphical EULAs:

\square How to represent text in a way everyday people will understand, might actually look at

Ethics: Data collection

\square In the small:
\square Data collection spelled out in Informed Consent
\square Anonymity of data / use in publications explained
\square In the large:
\square Usage/content logged for all users
\square Different from Google/Facebook/other analytics companies?
\square No face-to-face opportunity to explain data collection procedures and ensure understanding

Ethics: Ending the "study"

\square In the small:
\square Participants are recruited for an n-week study after which the system is taken away
\square Participants know what they are doing is evaluating a research prototype that is still in development
\square Participants are usually paid for their participation
\square In the large:
\square System can be taken down at any time / often unexpectedly for users
\square Users may not understand the concept of a research application or know that they are using one
\square User data can disappear
\square Participants unpaid

Understanding use with large deployments

\square Telefonica Research study
\square Surveys given to users in app or through email

- High amount of random answers, need to filter them out

■ Even when filtered, averages not telling of general population

- Need to scale respondent categories based on \% of population
\square Same applies for usage data of apps
- The mean is not the mean if different groups of people start adopting it!

Mixed Methods

\square Large Deployments with Small Ethnographic Research
\square ZoneTag (Ames et al)

- System deployed publicly on web (500+ users)
- Self-selected early adopters

■ Small-scale ethnographic study

- 13 users
\square Large deployments get more statistically meaningful data about use
\square Small qualitative studies help to understand use

Mixed Methods - Benefits

\square Example:
\square Quantitative data showing that no one is using feature X

- Why is this so? Not a useful feature? Hidden in the interface? Function not explained well? Benefits not explained well?
\square Ethnographic data can help to interpret this finding and understand the problem
\square Opposite works as well, find data in small-scale study, use data from large deployment to confirm severity of problem

Other Mixed Method Studies

\square Radar.net

- Garau et al 2006
\square FourSquare
\square Cramer et al 2011

Distribution Discussion

\square How would you distribute the app you made in this class?
\square What would you expect to be the average use over time (Time in app/Drop off rate)?
\square What model works best for this model?

Final Presentations

$\square 10$ minutes each (7 min presentation, 3 min questions)
\square Tell the story of the semester (generative study, concept development, related work, design, usability, implementation, final testing)
\square After presentation, will have 10 days to complete final paper (including feedback from presentation)

MIT OpenCourseWare
http://ocw.mit.edu

21W. 789 Communicating with Mobile Technology

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

