
MITOCW | MITCMS_608F10lec04-mp3

The following content is provided under a Creative Commons license. Your support will help

MIT OpenCourseWare continue to offer high quality educational resources for free. To make a

donation or view additional materials from hundreds of MIT courses, visit MIT

OpenCourseWare at ocw.mit.edu.

PROFESSOR: One example will be what happens when the battery runs up on the computer and what

bubbles up when it's running. And there's certain computers that might [UNINTELLIGIBLE]

hard drives. Some computers just keep it in RAM when you restart it. There's no big

difference. What happens when an IM window pops up in the middle of the game and leaves

the control screen? And all the keys start [UNINTELLIGIBLE] IM window. Ideally, they give you

pop ups that doesn't work. But catching those is one of our favorite things that we do when

we're making digital games here in the lab is like slamming all of our fingers on the keyboard

at once and see what happens.

And we're kind of looking for those things. We're also looking for subtler things like is the

amount of RAM that those games are taking up in the computer slowly going up all the time?

And of course, comparing it against a spec grade. So a character is supposed to be able to

create a certain file hold style or something when you enter this key sequence, and 99 times

out of 100 that works and that 1 out of 100 doesn't and we need to figure out why. That's our

feat.

So in a lot of those situations, what happens is that output comes back in the form of other

parts and-- how many of you actually do programming? Oh, OK. How many of you have found

a book report? OK, not that many. There are a couple of best practices where you follow a

book report and this one translates a little bit into when you're really working in a team in a

game. How do you communicate that something is wrong to someone else who is also

responsible for the game, but may not necessarily have seen the problem?

First of all, you describe what you were expecting to happen and what you were doing. I was

expecting to go right when I push the right button. And then you write down what happened.

You try to get as much detail as possible for the person to re-release this problem.

Now, when it comes to war games, in many situations, the kind of detail that you need to

provide largely comes up against it. So 'a' had this much money, 'b' had that much money,

they try to do this game mechanic and no one knew what to do because the way the rules are



written there's only one way to interpret it. And that gives your team enough information to be

able to start acting on it. Because you are bargaining and your rules are kind of right out there

in the open, there's usually less of a mystery to see where the problem occurs. But you know

there's problem and it could end and you largely see where it lies. You may not know what to

do to correct it, and that's actually where beta testing comes in. So but I'll get to the testing

shortly.

But technical testing, a lot of it again is comparing a given spec. Sometimes that spec is

created from your team. This is what we want our game to do. This is what we expected to

happen when we made this game. We expect that mid in the game, a certain game mechanic

will start to take priority over other mechanics. Early on, everyone's buying property is a

monopoly. Later on, everyone's going to be building houses and then even at the end, people

start to mortgage stuff. That's what we kind of expected out of it. And then you play the game

and you start realizing you mortgaging something way too early here, something's out of

whack here. So that's the kind of technical testing you do in games. This is what we expect,

why isn't it happening?

The other side over here is kind of like being the defender of the player, being the player's

advocate. How, can you be the person on the team that is actively looking for things in your

game that are going to hurt your players and then mentioning it and saying, maybe we should

do something about that. It's as simple as, here's the information that we want our players to

have at a certain time. Here's the game state. Your characters have a certain state. They are

this close to winning, but are this far away from winning to have these results here. Do the

players understand that? Have you provided them with enough information to be able to make

a good decision? If they know the game state, do they know what options they have in front of

them?

So as we play more and more board games this semester, you can actually look at the way

how rules are presented redundantly. Sometimes they're written up in the rule sheet, but and

of course you've got your index card-sized thing which goes through step one, two, three, four,

these are the four things you've got to remember every single turn. You've got to get it, and

everybody has a copy right in front of you because somebody on the team decided that that

was a good idea.

How did they come to that conclusion? Occasionally, they are doing it because they see

there's a problem right away. There's too much information, and you just don't expect any



player is ever going to be able to grasp all this information. So that's come out with a couple of

ways to simplify it. Sometimes that involves taking up the mechanics, making something that

was written up a text graphic report and some icons, reducing all the numbers by two so the

math becomes easier.

But sometimes, you do it by usability testing, and that's one kind of testing that often comes

together with beta testing. I've invited Sara Verrilli, our development director, to come in here

and talk about the kind of pre-testing that you can do, which is illustrated by this picture. And

the book goes through several different kinds of environments where you do pre-testing that's

sitting one-on-one with people and doing site testing for the group.

Because this style is all about board games and card games, for the most part, we're

designing games for three or four people to play at a time. The chances are, almost every

single test that you're going to do [UNINTELLIGIBLE] at a single time. That's just the

environment you're in that's meant to be played. That's why you end up testing it. Obviously, a

single-play computer game, that's not necessarily the environment you're testing in.

Actually, before I transition over, there is one thing I want to mention about technical testing.

Sometimes the specs you're testing against are not the ones that came up that would

necessarily come up with phi over t. If you're doing a computer game-- say for an Xbox or a

PS3 or a Wii. There are these things called technical [? evaluation ?] requirements, which are

basically huge lists of things that your game must do before Microsoft will sign your title or

allow it to be released under that title.

PC obviously doesn't have this, but if you release it on speed or something, then chances are,

you'll have requirements. It could be something as simple as generally, it doesn't crash-- and

games do crash, even on PS3 and Xbox-- you get things like what happens when you're

playing a game on the PS3 or Xbox-- I guess more the PS2 and the first Xbox-- and someone

yanks out the cable? All you're thinking is that you're-- and then the keyboard comes out, what

happens? Does it continue?

STUDENT: It buzzes.

PROFESSOR: It goes into pause, right? And usually it tells you, your controller is disconnected. And that's a

requirement. Someone had to write that code specifically to detect that situation and then

throughout the suite across the game. And the reason everybody had to do that was because

Microsoft and Sony and Nintendo-- well, not so much Nintendo nowadays because Nintendo is



Microsoft and Sony and Nintendo-- well, not so much Nintendo nowadays because Nintendo is

wireless-- but these are the kinds of requirements that they expect. If you lose your connection

to Xbox live halfway through the game then something's going to happen.

And so again, for that kind of technical testing, you're sort of comparing it against spec, but

spec may not necessarily be something that you're keeping up with. It may be something that

the publisher or your platform developer, platform manufacturer mandated.

How does it affect the board games is that sometimes, board games are actually going to

require half the requirements to that. If you're responsible for the design of the box, for

instance, there are things they're going to require on the outside of the box, like what ages are

the game applicable for, how long is it meant to be played, how many people are going to be

playing your game. I think Days of Wonder, which is a publisher, actually requires a character

to be on the box.

Even if your game has no characters, there must be a human-like presence on the box or your

players are on the box because they think that it increases sales, and they probably have the

numbers to back it up. That's why if you look at things like Ticket for Ride, for instance, has

people. If you play Ticket to Ride, it has no people in it, but it has people on the box because

they want people to think that's what users are.

So that's just an example of things that a board game publisher may require you to do. Very

common that you'll have to do translations in a range of different translations for the different

countries it's going to be released in. It may not be your job to do it, the publishers may end up

being the ones helping you with the translation, getting all the publishing data formatted

decently, but someone along the stage is making sure that happens before the game hits the

shelf.

OK, that's technical testing. That's a little bit about becoming a player and so let's talk about

data center a bit.

SARA VERRILLI: Let me bump you a little here, if you don't care.

PROFESSOR: Oh, right.

SARA VERRILLI: OK. Let's see. Let's actually go ahead. So focus testing. This is a very similar track for the

summer program folks. I have about 10 minutes to go back and relook at my notes and relook

at the lecture, so if it's a little stumbly in parts, it's because I haven't given it for a while and



haven't thought about it. It's much more geared, the original talk is much more geared towards

computer testing, and testing specifically single-player computer games than it's testing board

games, which are almost a multi-user.

So first of all, focus testing is actually dissimilar. Focus testing is only a specific case of user

testing, which is to say, you're testing your game using actual users, not your development

team, not people who play board games 12 hours a day because that's what they love to do

all the time, but more the sort of average person who might want to pick up your game off the

shelf, go buy it and then go play it with their family and then go out to dinner at Chuck E.

Cheese or something.

Another type of user tester is usability testing, which is fairly similar to focus testing in as much

as you're still using users for it. Focus testing is usually much more geared towards are people

enjoying your game? Do people want to play your game? Are people going through the sort of

play experiences you want them to have as they play their game? Because usually when you

create a game, you're thinking, oh, like for Settlers of Catan, you expect people to spend a lot

of time talking with each other trading things back and forth.

When you're making Diplomacy, you expect people to spend a lot of time arguing with each

other over well, if you invade that country, I'll invade that country and we'll gang up on him and

we'll all come out of the game and then we'll just divide four between the two of us and win

while you're making secret underhanded arrangements with the other guys, but OK, so he's

going to attack you on this ground, we both know that, that sort of thing, as opposed to, say,

Transamerica which is just more putting pieces down and it's pretty much independent play in

many ways.

Usability testing is much more about how you easy is it for people to play your game. Do they

understand your rules? Are the mechanics clear? When they sit down and start sorting out the

tokens, can they tell which tokens are the player pieces and which cards are which and how

you use those? Do the icons on your game make sense to people? Do they understand them?

Things like that. It's not really about whether or not people like your game or are enjoying your

game. It's about can people understand your game and start playing it.

So here we go. One big problem we run into when people sit down and we have people

playing your game and giving lots of comments, this was really fun or this really sucked, or I

hate this part where I have to spend time talking to the other players, I want to be able to stare



at just my cards and board completely without interacting with anyone else. Focus testers will

give you lots and lots of feedback, some of it is useful, some of it is not.

And you need to remember that focus testers are not actually people building the game.

Focus testers are the people who you are trying to get information about your game from and

one problem that we often see in experienced game developers and people making games

doing is, oh, the focus tester said we have to make the whole game red, quick, let's make

everything red.

So and that's usually, that's not a very good solution, right? Who knows what the problem with

this actually was, but what you need to do is find out why did the players want to make

everything red? Is it because they don't like the artistic design of the game? Is it because

someone in the game is colorblind? Someone playing the game currently is colorblind, is

having a hard time telling things apart so they'd like everything to be the same color so

everyone's having the same problem they are. I mean, who knows? It's hard to tell what

people are thinking. When they give you advice, and when they give you these comments, you

have to have some way to filter those comments, some way to think about them and some

way to decide what actually is the right reaction to take in view of what you want your game to

do and how you want people to play the game.

Since you're the game designers and developers, you have to make those decisions. Focus

testers can only give you data. You shouldn't ask them to design your game for you. Maybe

you actually have good ideas that you want to use, but you want to make sure that they're

good ideas that you do want to use.

So you may notice, these are both my lectures, and these are pictures that Mike [? Dropho ?]

drew for a poster, and we love him so much. So in the ideal focus testing situation, you're

really trying to get as much data as you can about your player playing the game without

spoiling the information. What you'd really like to recreate in a lot of ways is, so you just bought

the game and have gotten home, what happens? And that's what this picture is all about,

there's somebody luring somebody to play the game without any information.

So things to think about when you're planning your focus testing is, what are you testing?

What questions do you want to ask? What information do you want to get out of it? How are

you going to test it? How many players do you need? What kind of interactions do you want to

see? On the backhand, who are you testing with? What kind of people are going to make your



game? Are you making a game for children age 9 to 15? Are you making it for college-age

students? Are you making a game that you think that older players will want to play?

Because if you're making a game that you think is going to be popular with the senior citizens

market, testing it with a bunch of elementary school kids probably isn't going to go very will.

Trivial Pursuit Classic Edition, a game that came out about 20-odd years ago, I suspect that if

you sat down a group of high school students with it and had them play it, about three quarters

of the questions they'd just stare at you and be like, I've never heard of that. So, that's

certainly where the audience comes in.

So, the what, planning out the questions that you think you're going to get information for.

When you know what information for focus testing, it's a lot easier to know what to keep track

of, how to take notes, what reactions you're most interested in as people are playing the

game. So, what questions are you going to ask? What data it takes to answer your question?

And how are you going to get that data? Are you going to go all through observation taking

notes? Are you going to just step in and out of questions? So why did you move that character

from there, just out of curiosity I'm wondering why you made that move. Will you tell me about

it? Or, you can ask them to fill out a questionnaire at the end of it.

Depending on what data you want, different methods will work best. In general, usually the

best way to do it is observation. As soon as you ask someone questions, you sort of perturb

the system and when you ask them to fill out a survey, it's after they've done it. They've kind of

forgotten what they were doing. They may not exactly remember, and to be perfectly honest,

people would really rather play your game than fill out a form. So they'll be more engaged

more interested and more interactive when they're playing a game and that's when you're

going to get your best data.

But there are times when you want to ask someone something sort of analytical and you don't

want someone to be thinking analytically while they're playing the game in a lot of ways , and

so there are times when that reflection comes out so much better and it's better to have that

written down and get it in your own words.

STUDENT: You would hope it plays better than a survey.

SARA VERRILLI: If your game is better than a survey, you probably already observed a problem right there and

you're probably glad you found it.



So how? In order to get all that data, you're going to have to actually interact with the user,

someone who's never seen your game before, someone who doesn't actually care whether or

not you get good information out of playing this game. They came here to sit down and play

the game, and while they would like to help you by giving you information, that's not their

primary goal in a lot of ways. Usually, their primary goal is to sit down, and play the game, and

have a good time.

So you need to be able to structure the interaction with them so that getting the data to you is

as easy for them as possible. So we need to think about what this player needs before he or

she sits down to play. Usually, in a board game or a card game, that's the set of rules. In a

computer, it's always trickier. Usually when we're bringing in people to test the first prototypes,

we have a game that works, but we don't have any instructions in game. If we're going to have

a tutorial or anything like that, that's usually one of the last things that goes in.

So when you're testing computer games early in the process, usually you end up sitting down

and writing out, well, this is what the tutorial would look like if we had it, so read this and then

sit down and play it. With board games and card games, it's actually a little bit easier, because

you can say, a ha, this is the rules that are going to package with the games. Give you the

rules, step back and see what happens. So, it's actually an easier aspect for testing board

games.

And finally, treat the players politely. When they find a misspelling in your rules or when they

discover that you've left out six of the key cards to play the game, oh, yeah, you're right, thank

you for pointing that out, I wouldn't have noticed that if you hadn't shown it to me. Whether you

would have or not doesn't really matter. They're doing you a favor by playing your game that

isn't quite working well, so you want them to know that their contribution is invaluable and you

appreciate the time and effort they've put into it.

A few things, the more they talk about your game and the mechanics they find that break or

that do or don't work, that's all data right there, That's all great. Another great advantage of

testing board games is you usually get groups of players, like two or three or four players, and

when you have multiple players, they'll talk to each other about it. Oh, I noticed this. Did you

notice this strategy? Yeah, I did, but I noticed that if you add that strategy that you can do this

thing and this other thing and that's all really neat.

When you're testing single-player computer games like we usually do in the summer program,



you've got a single user that is sitting there between them and the computer. You have to

watch and figure out what they're thinking. When you have a group, it's not usually that hard to

get them talking about what they're doing and what they're thinking, and so that's a really good

way to try and get more data.

So yeah, here's sort of the end summary. Have a specific question and questions in mind.

Know what you're doing in focus testing, know why you're doing usability testing. If you don't

know what you're trying to test for, then your data is going to be a lot harder to figure out what

to do with. So you always want to we have that question in mind. That's actually a really big

one.

What data you need to answer that question so you can collect it and know how to collect it,

and make sure that you can give the information to the players, a standardized set of

information to the players and step away so you're not sort of coloring the information and

giving them the things you're talking about by, oh I forgot to mention, oh and did I say, so

you've actually got sort of a standardized standard size play group scenario set down. OK, I

think that's actually what [? I came for. ?]

PROFESSOR: So a couple of words about when to be testing, which is really as soon as possible. Usually,

before you think it's possible, you should be already starting to plan your fist test because at

that point, you're probably going for the lowest-hanging fruit, which will be probably somebody

else in this class because they're going to give you feedback anyways, you can use that favor

in exchange. The whole point of making testing as simple as possible is you want to be able to

get information while you still have time to fix it, to do something with that data.

What has happened a lot of times in this class is we have a project team where they come up

with a game requires say, generating so many cards or that they're going to spend most of the

project deadline actually creating those cards. They'll test it, but they'll test it on themselves

because the team already gets it and they're not looking for other people. They have a plan to

ask their friends to come in for a specific time, they've set aside an hour or something like that.

So what happens is that the last week comes around and they start playing it with people who

haven't seen the game before and then discovered problems. Unfortunately, the game has

100 cards that all now need to be fixed. This is a problem because you just discovered that

problem too late.

A couple of ways to handle that, though, one, don't decide on a game where making changes



across the entire game is going to take you more time than to test it because that's going to

make it impossible to fix anything. But the other one is just testing early. As soon as you've got

a couple of key mechanics down, sure you are planning to play this game with 100 cards, start

with 20. Start with a small of group of cards, hence your core can see people and understand

that they're going to discover things in the production of those 20 cards and in the testing of

those 20 cards that maybe you don't want to be doing for the next test and you can redo those

20 cards pretty quickly the way that you can't redo 100 cards. Just an example. I'm really not

encouraging people to do a 100-card game, by the way. A regular poker deck, 52 cards, that's

all you need for a really interesting game.

Let's see. Some other things. Say you're doing a test, but it's not with your entire team

present. Say it's just you and your teammates are all living in different dorms and you decided

to play with those in your dorm. That's great, because it's a cool game and you've got your

feedback, how do you communicate that back to your team? I talked a little bit about writing up

a little report, but here's a couple of other tips because one thing you have to remember is that

chances are, every single idea in the game, somebody in your team is probably really

passionate about it and what you're basically trying to do is try to convince someone in your

team that maybe this idea should be changed. And your game will probably be better for it, but

there are some tactful was of telling that.

So let's see. Keep it short, this also applies to book reports. I talked about you giving people

enough information to reproduce what the problem was so that they can understand the state

of the game and why the problem is occurring. And the flip side of that is not too much

information, not more information than is necessary to keep it short. Little [? farm ?] codes,

give them something that's easy for people to scan. Don't make them read and essay for them

to figure out what comments will be solved.

Now actually, one thing to keep in mind and if you keep in mind and think about what Sara

said earlier about the data that you decide to collect, one problem with board games is with all

the interesting conversations happening around the table and multiple players suggesting

strategies to each other, you can come up with reams of notes in a single play test session.

How do you decide to digest that is really important. And you're the only person there and

you're the only person on your team, you need to try to let the rest of your team know. You

need to put in the work of digesting all of that information before necessarily giving it over to

your team.



SARA VERRILLI: One possible solution also is you can get permission from play testers for a tape recorder. Just

get a digital recorder and record all of the conversation as it goes on.

PROFESSOR: But you still want to pick out the keys, you don't want to revisit the entire conversation.

Because if the game took an hour, and every single one of your team members visits, by now

you've lost three hours. So you want to find that, do that little bit of work to save yourself the

detail.

But that's the way because you can focus, you can take down notes on the main points and

just let the tape recorder record all the details so that you don't have to worry about recording

and really, the main points are the things that you want to make sure you get across to your

team. The tape recorder is just evidence. You could use video depending on who you're

recording with. Sometimes people get kind of antsy when they know there's a camera. That

being said--

SARA VERRILLI: And also, just put the video tilted at the board so you're not recording the players, you're

recording the game.

PROFESSOR: Actually webcams are really good for that sort of thing.

SARA VERRILLI: Yeah.

PROFESSOR: You don't run out of tape, just record straight to hard drive.

SARA VERRILLI: Easy to fast forward through, also.

PROFESSOR: Yeah, with your editing tools.

Let's see. So when you're reporting to other people, think like bullet points for instance. Huge

long paragraphs of prose, not so much. Let's see. Try to avoid using the following words,

broken, problem, unusable, confusing, kind of odd, you can get more specific than that, but

these are words that kind of like imply not only is there a problem, someone made a mistake in

his design of the game. And truth be told, most of the time it wasn't a mistake, you just didn't

have the complete play testing, you probably just had the designer.

But you don't want to make someone feel like they've made a mistake because that makes

them defensive and then they're going to try to defend how what they wrote in the first place is

actually correct, which is actually not correct either. You can talk about features that need



attention. With attention, this feature could be confused. I guess that's actually on the edge

there.

So but just generally, pick your words carefully and one thing that Sara mentioned earlier was

that testers are not designers and key designers are actually not a good testing team. So for

the most part, you are immediately going to exclude yourself from your target audience

because you know too much of the game. This is also covered in your book. As soon as

you've played through your game once or twice, that's it. Your kind of work is finished. You can

still be a good technical tester, I guess. You can still check whether some mechanics are

working the way that you want to work, but you can't tell whether the dynamics in your settings

are working anymore. You have to get your focus testing done.

SARA VERRILLI: You also really can't tell, you can never tell-- you can never share your usability tester. It will

always make sense to you. It's amazing that what makes sense to you is completely

incomprehensible to the very intelligent person you give the game to. Really, truly, I've been

thinking about this one myself.

PROFESSOR: Usability testing, by the way, is one of those things that even if you only have the chance to do

a pop-up partial test like, all I have is this one card, the game's not complete, but grab

someone walking down the corridor on the way to the washroom and say, come in here and

take a look at this thing I'm working on. Even that is better information.

STUDENT: Hey kid, come in here. Come in here, I have something to show you? I have a surprise for

you. [LAUGHTER]

SARA VERRILLI: Actually, you can get going testing for [? serious. ?]

STUDENT: Free candy.

PROFESSOR: [? Mona ?] actually calls it employee kidnapping. [LAUGHTER] Of course, he's the creative

director, so he can do that.

SARA VERRILLI: It works best if you're accosting people whom you have power over.

PROFESSOR: The audio thing, by the way, is one of those things that could be really useful if people are

difficult [? pundits ?]. And so it might be one of those things that you want to keep in reserve,

it's like, OK, there is a problem here and the team goes, I don't think there's a problem here. I

don't understand why anyone's having problems here. Then you quit, because it's kind of a



bludgeon actually on the team.

On one hand, if you have a good agent team, they're going hear it and go, oh my god, we

have a problem and immediately try to fix it. But it's awesome. On the other hand, it's like, well,

do you need to do a recording for every single offer that we have? That's something to be

known about, so keep that in reserve. I think that's pretty much it. I have an exercise, but I

think [UNINTELLIGIBLE] so I can turn that off. Do you have any questions while I graph the

data segments? No? OK.


