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1 Anomalous diffusion

In our studies of river network geometry, we have seen how simple random
walks create a hierarchy of shapes.

However the random walks need not be so simple, and generalizations of the
diffusive scaling 〈x2〉 ∼ t are possible.

Such behavior occurs when there is no characteristic jump size or when there
is no characteristic waiting time between jumps.

The problem has lately attracted much controversy and attention in ecology
(animal movement [1–3]) and sociology (human movement [4]).

It also occurs widely in physical problems of transport, such as in diffusion
with traps, and has been applied with much success to problems of dispersion
in groundwater flow [5]. Another example is diffusion in the presence of
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convection rolls [6].

In this lecture, our principal goal is to illustrate how anomalous diffusion
may arise, thereby suggesting one way in which deviations from the scaling
predictions of simple random walks may arise in particular problems.

1.1 Beyond the central limit theorem

Our discussion of the random walk centered on analysis of the sum XN of N
random variables li:

N

XN = li
1

There we found that the distribution of

∑
XN is Gaussian. Our sketch of the

central limit theorem required that the second-moment 〈l2〉 be finite.

This condition is not met when the distribution p(l) is “long-tailed” or
“broad.” Consider

p(l) ∼ l−(1+µ), µ > 0, l→∞.

Assuming a lower limit l0,

〈`〉 =

∫ ∞ ∞
lp(l)dl =

l0

∫
l−µdl

l0

and

〈`2〉 =

Whether the mean or variance exists

∫ ∞
l1−µdl

l0

depends on the value of µ:

0 < µ ≤ 1 : 〈l〉, 〈l2〉 infinite

1 < µ ≤ 2 : 〈l〉 finite, 〈l2〉 infinite

µ > 2 : 〈l〉, 〈l2〉 finite

The latter case (µ > 2) falls within the conditions of our derivation of the
central limit theorem.
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The others do not. A different limit theorem nevertheless exists [7,8] to show
that the sum XN converges to a “stable” distribution.

The resulting random walks are qualitatively different from those we’ve con-
sidered previously, and require a generalization of the diffusive law 〈x2〉 ∝ t.

This is called anomalous diffusion. It appears, at least phenomenologically,
in varied settings: diffusion of passive scalars in turbulence, dispersion of
contaminants in groundwater, animal foraging, human travel. The various
empirical reports are however controversial.

Here we consider two related types:

• Lévy flights. Random walks with power-law step sizes at equal incre-
ments of time.

• Continuous time random walk. Random walks of equal step sizes but
with power-law waiting times.

We proceed by examining the sum XN .

1.2 Large fluctuations and scale invariance

First, we seek some statistical intuition and ask [8]: What is the largest value
lc(N) encountered among the N terms of the sum XN?

The probability that l > lc is chosen in a particular trial is

P (l > lc) =

∫ ∞
p(l)dl

lc

If l > lc occurs at most once in N trials, we have, for large N ,

P (l ≤ lc) ' 1, N →∞

The probability that lc occurs only once in N trials is maximized when

N P (l > lc) [P (l ≤ lc)]
N−1 ' N P (l > lc) = 1
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Substituting p(l) = l−(1+µ), we have

N l−µ
∣∣∞ 1
lc(N)
∼

and therefore
lc(N) ∼ N 1/µ, N →∞.

For large but finite N , the region l > lc(N) is effectively unsampled.

For 0 < µ ≤ 1, we can therefore ignore the long tail of p(l) and estimate the
sum XN by multiplying the “truncated” mean N times:∫ lc(N)

XN ∼ N lp(l)dl

We obtain ∫ N1/µ

µ

{
N(N 1/µ)(1−µ) = N 1/µ (µ < 1)

XN ∼ N l− dl ∼
N lnN (µ = 1)

or, equivalently,

XN ∼
{
lc (µ < 1)
lc ln lc (µ = 1)

Thus the typical value of the sum XN is dominated by the largest term within
it, lc(N).

Note that we have obtained this result even though 〈l〉 and therefore 〈XN〉
do not exist.

We can obtain the variance by a similar agument. We have, for µ < 1,

VarXN = N Var

= N

N

(〈
l2

N

〉l
− 〈l〉2

)
∼

[(
1/µ
)(2−µ)

− 2(XN/N)

]
∼ N 2/µ −N 2/µ−1

∼ N 2/µ (µ < 1, N →∞)

Here the limitation to µ < 1 applies to the term 〈l〉2. But when µ = 1 its log
divergence scales away nevertheless and we obtain the same result.
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For µ > 1 the mean

〈l〉 ∼ O
(

1 µl〈 〉 0
−
)

= const.

But l2 still diverges for µ ≤ 2 so that

2VarXN = N
(〈
l2 − 〈l〉

/µ

)
∼ N 2 −

〉
const ·N

∼ N 2/µ (µ < 2, N →∞)

where we obtain the same asymptotic scaling since 2/µ > 1.

Finally, note that the variance diverges logarithmically for µ = 2. When
µ > 2, the variance grows linearly with N , as for a typical random walk, and
the central-limit theorem applies.

Recalling that l 1
c ∼ N /µ, we thus have that the variance of the sum

VarXN ∼ l2c , µ < 2.

Conclusion: When µ < 2, the sum XN is dominated by the largest fluctuation
lc(N). This holds true even for 1 < µ < 2 because the typical deviation of
XN from its mean scales like lc.

1.3 Lévy flights

A picture of a Lévy flight looks like this: many small steps are occasionally
followed by a much larger step, which are, collectively, followed by a much
much larger step.

In this way there is no intrinsic scale to the process, and no length scale ever
dominates.

In our present formulation, rms displacements r grow like

r ∼ t1/µ.

This super-diffusive behavior for small µ < 2 is a consequence of the instan-
taneous jump, i.e., assuming t ∝ N .
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Thus practical applications tend to include a modification for jump times, as
we next consider.

1.4 Continuous time random walk

The CTRW is a random walk on a regular lattice with random waiting times
τ between each step:

ψ(τ) = probability of waiting time τ .

It is essentially diffusion with “traps,” in which the trap waiting time differs
in both space and time.

As before, we take the jump size distribution to be p(l), but with finite mean
and variance.

After N steps, we have, as usual, the mean-square distance growing linearly
with N :

〈X2
N〉 = 〈l2〉N, N →∞

where

〈l2〉 = l2p(l)dl.

Nearest-neighbor hops

∫
⇒ 〈l2〉 = the squared lattice spacing.

The total time t taken by the N hops is

N

t =
∑

τn.
n=1

The problem thus concerns the sum of random waiting times τ rather than
random steps l.

If ψ(τ) is well behaved such that 〈τ〉 is finite,

t ∼ N〈τ〉

and

〈X2〉 = 2Dt, D =
〈l2〉
2〈τ〉

,
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i.e., typical diffusion.

The interesting case corresponds to a long-tailed ψ(τ) such that

ψ(τ) ∼ τ−(1+µ), 0 < µ < 1, τ →∞
When µ < 1, 〈τ〉 =∞. Applying the results of our earlier analysis, the total
time t can be estimated from the largest expected waiting time τc in N steps:

/µ

∼ N

∫ τc N1

t τψ(τ)dτ ∼ N

∫
τ−µdτ ∼ N 1/µ, 0 < µ < 1

After N steps of the random w〈alk,〉we h〈ave, as usual

X2 = l2 N.

But now N ∼ tµ and therefore

〉
X2 ∼ l2 tµ, 0 < µ < 1.

This behavior is called

〈
sub-diffusive

〉 〈 〉
, because

〈
X2
〉

grows slower than time
(0 < µ < 1).

1.5 Diffusion on a comb

The most interesting cases of anomalous diffusion occur when the power-law
distributions of step size or waiting times arise intrinsically, rather than by
imposition.

Probably the simplest such case is a random walk on a comb.

We take the x-axis along the backbone of the comb and L as the length of
each of the comb’s equally spaced “teeth.”

In considering diffusion along x, we must take account of the time spent
“trapped” in the teeth.

1.5.1 Infinite L

For infinitely long teeth, L → ∞, and the waiting time in a tooth is given
by the distribution of first-passage times (already used in our study of river
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basins):
ψ(τ) ∼ τ−3/2, τ →∞

Applying the results of the previous section, we recognize µ = 1/2 and con-
clude that

〈x2〉 ∼ t1/2 ⇒ 〈x2〉1/2 ∼ t1/4

Thus the rms displacement grows subdiffusively, like t1/4, rather than t1/2.

1.5.2 Finite L

If the “trap” size L is finite, the time required to explore a given trap is

τc ∼ L2/D0,

where D0 is the bare diffusion coefficient inside the trap.

For times t� τc, the subdiffusive scaling of the previous section applies.

For t � τc, however, we must consider that the average residence time in a
trap is no longer infinite.

The distribution ψ(τ) instead has an effective cutoff such that

τc τc

〈τ〉 ∼
∫

τ ψ(τ) dτ =

∫
τ−1/2dτ = τ 1/2c ∼ L.

Thus for times t� τc, the effect of the traps is merely one of increasing the
time interval between hops along the backbone x. That is, we have as usual

2

〈x2 l〉 = 2Dt, D = , t τ
2〈τ

�
〉 c

where l = the tooth spacing. Substituting for 〈τ〉, however, we find

D ∼ 1/L.

Thus the effect of finite L is to scale the effective diffusion coefficent by 1/L.
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1.6 Lévy walks

The CTRW can be combined with Lévy flights to render the latter more
physically appealing.

One idea is to combine the jump-size and waiting-time distributions into a
joint probability density [9, 10]

l
Ψ(l, t) = p(l) δ

(
t−

v(l)

)
where p(l) has the usual power law tail and v(l) is a (possibly) length-
dependent velocity.

The resulting random walk is called a Lévy walk [9, 10]. It visits exactly the
same sites as a Lévy flight, but waiting times scale with distance hopped.

Another idea is for the waiting times and step sizes to be independent [4],
i.e.

ψ(τ) = τ−(1+α), 0 < α < 1

and
p(l) ∼ l−(1+β), 0 < β < 2

where the restriction on α is such that the waiting times promote sub-diffusion
whereas the jump sizes tend towards super-diffusion.

Applying our earlier results,

X ∼ 〈l〉 ∼ N 1/β

and
t ∼ 〈τ〉 ∼ N 1/α

and therefore
X ∼ tα/β.

1.7 The lessons learned

• Long-tailed distributions break the central-limit theorem and produce
large fluctuations, intermittency, and scale invariance; i.e., variability.
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• These distributions need not be introduced ad hoc. Some problems,
particularly transport in disordered media, generate them “for free.”

• Resulting rms fluctuations
〈 2
x2( )

〉1/
t ∼ tα scale anomalously, with α 6=

1/2.
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