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1 From microdynamics to macrodynamics

Throughout the course we will suggest that simple idealized microdynamics,
suitably averaged in space and/or time, suffices as a representation of complex
macroscopic continuum behavior.

We now provide two examples in which such a connection can be shown
explicity:

• Random walks → diffusion.

• Lattice gas → fluid flow (as in the previous lecture).

The interest in these models derives in part from their statistical dynamics.
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1.1 Random walks

References: [1–3]

1.1.1 One-dimension, discrete time and space

Consider a (drunkard’s) random walk along a line:

• Start at time t = 0 and position x = 0.

• Every τ seconds, take a random step s to the left or right.

• Assume equiprobable steps of equal size δ:

P (s = δ) = P (s = −δ) = 1/2.

• No memory (statistically independent jumps).

We think of this as a caricature of real diffusion (e.g., Brownian motion).

Now consider an ensemble of N independent random walks (i.e., many such
drunkards, each acting with no awareness of the others).

Let xi(n) be the position of the ith walker after n steps. Then

xi(n) = xi(n− 1) + s.

The mean position of a large ensemble of walkers after n steps is

1〈x(n)〉 = lim
N→∞

N

xi(n
N

i=1

− 1) + s

= 〈x(n

∑( )
− 1)〉+ 〈s〉

= 〈x(n− 1)〉.
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Here we have used the angle brackets 〈·〉 to denote the ensemble average.
The result shows that the mean position is independent of n, thus retaining
permanent memory of the initial condition:

〈x(n)〉 = 0.

Intuitively we understand that there should nevertheless be a wide spread in
the probability P (x) that increases with time:
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We characterize this spread by the root-mean-square displacement

〈
x2(n)

〉
.

To calculate it, first write

x2i (n) =
[
xi(n− 2

1) + s
]

= x2i (n− 1) + 2sxi(n− 1) + s2.

Because the mean of a sum of random variables is the sum of the means, the
mean-square displacement in the ensemble is

〈
x2(n)

〉
=

〈
x2(n 1)

〉
+ 2 s x(n 1) +

〈
s2
〉

=
〈
x2

− 〈 − 〉
(n− 1)

〉
+ 2 s x(n 1) +

〈
s2
〉

=
〈
x2(n− 1)

〉
+ δ2
〈 〉 〈 − 〉
.

In the second relation, we have replaced the average of a product with the
product of averages because s is uncorrelated to x. (This also may be deduced
from the observation that the walk contains no memory of past steps.)

Note that our result is in the form of a recursion, which is readily put in the
simpler form 〈

x2(n)
〉
= nδ2

3



Since t = nτ , we have 〈
x2
〉

= δ2t/τ = 2Dt,

where we have defined the diffusion coefficient

δ2

D = .
2τ

Thus the mean-squared displacement increases linearly with time, like 2Dt.
Consequently the root-mean-square displacement increases like the square-
root of time: 〈 1/2

x2

In

〉
= (2Dt)1/2.

tuitively we√understand that the width of a bell-shaped distribution P (x, t)
increases like 2Dt.

Indeed, in the plot above, 〈 〉1/2
x2 = 1, 2, and 4

corresponding to times t such that

2Dt = 1, 4, and 16.

For a small molecule in water, D ' 10−5 cm2/s. So imagine you’re a bac-
terium (size ∼ 10−4 cm), and you want to know how how long some molecular
n〈utrien〉 t will take to diffuse a distance ` away from you. Identifying ` with

1/2
x2 , the diffusion time τd is

τd ∼ `2/2D.

Consider two particular cases:

` (cm) τd (s)

10−4 5× 10−4

1 5× 104

In other words, the molecule would stay within a length commensurate with
a bug’s size for only about a millisecond. But it would stay within 1 cm for
about 14 hours!
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This huge change is a consequence of the quadratic scaling τd ∝ `2, a hallmark
of diffusive processes.

In contrast, for a simple advective flow times scale linearly with distance.

1.1.2 Higher dimensions

Before moving on, we first argue that our little toy problem is equally valid
in higher dimensions.

In, say, two dimensions, the random walker is on a plane. In our discrete
approximation, this corresponds to a lattice with a “Manhattan metric,” with
the drunkard originating at his corner bar and moving ±δ in each dimension
at each time step.

Because the drunk’s motion in x is independent of his motion in y,〈
x2

Since

〉
=
〈
y2 = 2Dt

the mean-square distance from the

〉
origin is

r2 = x2 + y2,

we have 〈
r2
〉

= 4Dt.

The generalization to higher dimensions is obvious. The point is that we
retain the diffusive scaling `2 ∝ t.

1.1.3 The binomial distribution and the Gaussian limit

We return now to one dimension, and seek the probability P (x, n) that a
random walker is at position x after n steps.

In doing so, we generalize the toy problem so that

P (s = δ) = p

P (s = −δ) = q = 1− p,
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i.e., the random walk takes positive steps of size δ with probability p and
negative steps with probability q = 1− p.

The displacement after k positive steps is

x(n) = [k − (n− k)]δ

= (2k − n)δ

The probability of arriving at this point by a specific sequence of k positive
steps and n− k negative steps is

pkqn−k.

Since there are two choices per step, there are 2n possible sequences of steps.
The number of possible sequences( ) in which k of the n steps are positive is

n n!

k
≡ .
k!(n− k)!

The probability of having exactly k positive steps in n attempts is the bino-
mial distribution

n!
P (k, n) = pkqn−k.

k!(n− k)!

For large n (long times) the binomial distribution approaches the Gaussian
distribution

1
P (k, n)dk = e−(k−µ)2/2σ2

dk
(2πσ2)1/2

where P (k)dk is the probability that k is between k and k + dk, and

µ = 〈k〉 = np,

σ2 =
〈
k2

W

〉
− 〈k〉2 = npq.

e can write this in a simpler form by substituting x = (2k − n)δ. The
resulting distribution then corresponds to an unbiased random walk about
x = 0 with p = q = 1/2.

Note that in the symmetric case we can also substitute

dx = 2δdk, t = nτ, D = δ2/2τ

to obtain
1

P (x, t)dx =
2

e−x /4Dtdx,
(4πDt)1/2

i.e., a Gaussian with mean 〈x〉 = 0 and variance 〈x2〉 = 2Dt.

6



1.1.4 Central-limit theorem

The previous result is in fact more general. No matter what distribution P (s)
the step size is drawn from, the long-time limit of P (x) is still Gaussian.

To show this, we shall use the Fourier-transform pair
∞

φ(k) =

∫
eikxP (x)dx

−∞
1

P (x) =
2

∫ ∞
e−ikxφ(k)dk.

π −∞

The first relation also defines the average (or characteristic function)

φ(k) =
〈
eikx
〉
.

Note that the jth derivative evaluated at zero has the simple form

djφ(k)
∣∣∣∣ = ij

∫ ∞
xjP (x)dx

dkj k=0 −∞

= ij
〈
xj

where xj is the jth moment of P (x).

〉

W

〈 〉 ,

e express φ(k) as a Taylor series of the moments:

dφ
φ(k) = φ(0) + k

k
+

dk

∣∣∣ 2∣
k=0 2

d2φ

dk2

∣∣∣∣
k=0

+O(k3)

= 1 + ik〈x〉 − k2

x2 +O(k3).
2

Now return to our random walk. The distribution

〈 〉
P (x) derives from the sum

of random steps si, i = 1, . . . , n.

We allow si to derive from any probability distribution with finite mean and
finite variance. For convenience we assume that all si are drawn from the
same distribution with zero mean (but it doesn’t matter).

Assuming the walk starts at the origin, the location of the walk after n steps
is given by the sum

n

x(n) =
∑

si.
i=1
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The mean-square distance is〈
x2
〉 n

=
i,j

∑
=1

〈sisj〉 = n
〈
s2

2 2

〉
= nσ2,

where σ ≡
〈
s
〉

is the variance of s.

Since
〈
x2
〉

grows with n, we consider the reduced sum

w(n) = x(n)/n1/2,

whose variance
〈
w2
〉

is constant.

We seek the probability density P (w). To do so, we write its characteristic
function

φw(k) =
〈
eikw(n)

〉
=

〈
exp

(
ik

j
n

∑n
s

1/2
j=1

)〉
where we have merely used the definitions of φ, w, and x. Since the expo-
nential of a sum is a product of exp〈onentials,∏n

1

φw(k) = eiksj/n
/2

j=1

〉
n

=
∏
j=1

〈
1

eiksj/n
/2
〉

where in the latter relation we have used the independence of each random
step sj. Since each term in the product above is equal,

φw(k) =

≡

〈 n

eiks/n
1/2
〉

[
φs
(
k/
√
n
)]n

.

where we have implicitly defined the characteristic function φs.

Expanding φs(k/
√
n) in powers of the moments, we have

φs
(
k/
√
n
)

= 1− k2σ2

2n
+O

(
k3

,
n3/2

)
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where the first-order term vanished from the assumption that 〈s〉 = 0.

For large n, the third-order term can be neglected. Substitution of the re-
maining expansion into the expression for φw(k) then yields, for large n,(

k2σ2

lim φw(k) = lim 1
n→∞ n→∞

−
n

2n

)
= lim exp

n→∞

[
n log

(
k2σ2

1−[ 2n

)]
= lim exp n

n→∞

(
−k2σ2

2n
+

1

2

(
k2σ2

.
2

)2

+ . .
n

)]
= e−k

2σ2/2.

The final step is the inverse Fourier transform to obtain P (w):

1
P (w) =

∞

2π

∫
e−ikwφw(k)dk.

−∞
1

= √ 2

e−w /2σ2

,
2πσ2

i.e., a Gaussian distribution with zero mean and variance σ2.

This is the central limit theorem: for large n, the sum of random numbers
drawn from any distribution with finite variance asymptotically approaches
the Gaussian distribution.

Our rescaling by 1/
√
n hides the growing variance but does not change the

result: the distribution P (x) of the random walk is Gaussian, no matter how
the steps are made.

This is an elementary statement of universality: in the long-time limit, the
details of the “microdynamics”—i.e., the step-size distribution—do not mat-
ter. The long-time limit of the Gaussian requires only that the probability
of extremely large events be extremely small.

This result underlies the ubiquity of the Gaussian distribution: any process
that results from “sums” of random variables is likely to yield Gaussian fluc-
tuations.
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1.1.5 Macrodynamics: the diffusion equation

We now proceed to derive the diffusion equation from our random walk.

Suppose we have a long tube of cross-section A in which particles undergo
random walks. We are interested in N(x), the number of particles at x (i.e.,
between x− δ/2 and x+ δ/2), along with the particle flux Jx.

How many particles pass through a unit area in unit time, from x to x + δ?
And in the other direction?

In other words, what is the net flux Jx?

We imagine a boundary between x and x + δ. During one time step τ , half
the particles at x cross over to the right, and half the particles at x+ δ cross
over to left.

The net flux (number particles per unit area per unit time) is

Jx =

(
N(x)

2
− N(x+ δ)

2

)
1

Aτ

where the factor of 1/2 comes from the fact that half the particles at each
location move away from the boundary rather than towards it.

Rearranging and multiplying by δ2/δ2,

δ2

Jx = −
2τ

1

δ

(
N(x+ δ)

Aδ
− N(x)

Aδ

)
Defining the number density or concentration C = N/Aδ and recalling D =
δ2/2τ , we have

C(x+ δ) )
Jx = D

− C(x− .
δ
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Letting δ → 0, we obtain
∂C

Jx = −D .
∂x

This is Fick’s (first) law: the concentration flux goes down the concentration
gradient, at a rate given by the diffusivity D.

Fick’s law is an example of a “linear-response relation.” Others include Ohm’s
law and Hooke’s law. The linearity is essentially an assumption, which follows
in our case from assuming that the two sides of the boundary through which
particles flow act independently of one another.

Now consider particles flowing into and out of a box with cross-sectional area
A perpendicular to and width δ parallel to the x-axis.

The concentration C(t) inside the box changes with the net flux into it.

In τ units of time the concentration changes as

C(t+ τ)− C(t) =
( Aτ
Jx(x)− Jx(x+ δ)

)
Aδ

The factor of Aτ converts the concentration flux to the number of particles
flowing through the face, and the factor of 1/Aδ converts that number to a
concentration. Simplifying, we obtain

1 1
C

τ

(
(t+ τ)− C(t)

)
= − J

δ

(
x(x+ δ)− Jx(x)

)
.

Letting τ → 0 and δ → 0, we obtain

∂C

∂t
= −∂Jx

∂x
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Substituting Fick’s first law for Jx then yields the diffusion equation:

∂C ∂2C
= D

∂t
.

∂2x

These developments can be derived succinctly by an alternative approach.
Let

Pn(i) = probability that a random walker is at site i after n steps.

Since steps to the left and right occur with equal probability, we have

1
Pn(i) =

2
Pn−1(i+ 1) +

1
Pn

2
−1(i− 1)

Now set
t = nτ and x = iδ

and consider the probability to be spread over an interval of size δ so that

Pn(i) = δ · p(x, t).

Then
1

p(x, t) =
2
p(x+ δ, t− τ) +

1
p(x

2
− δ, t− τ).

Multiplying both sides by 1/τ and rearranging, we have

1

τ
[p(x, t)− p(x, t− τ)] =

δ2

2τ
· 1 [p(x+ δ, t t

2
− τ)− 2p(x,

δ
− τ) + p(x− δ, t− τ)]

We recognize the LHS as a finite difference in time and the RHS as a finite
difference of finite differences in space.

Thus in the limit as τ → 0 and δ → 0, we have

∂p ∂2p
= D

∂t ∂x2
, D =

δ2

2τ

expressing the diffusion of probability.

Reverting back to the concentration C, note that in higher dimensions, Fick’s
first law is

~J = −D∇C
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and mass conservation yields

∂C ~=
∂t

−∇ · J.

Combining the two, we have the diffusion equation

∂C
= D ,

t
∇2C

∂

which may be straightforwardly obtained by generalization of our random
walk to higher dimensions.

By deriving the diffusion equation via a random walk, we have exposed the
connection of diffusion to random motion.

The universality of the Gaussian distribution tells us that only the diffusivity
D changes as the distribution of step sizes (or waiting times) changes, not
the diffusion equation itself, provided that the step size and waiting time
distributions are not too wide.

Conclusion: The simplest possible random walks are solutions to the diffusion
equation. Consequently:

• We can think about diffusive processes as random walks.

• We can equally think about random walks as diffusive.

• Should we wish to numerically solve the diffusion equation, we can sim-
ulate random walks instead.

1.2 The lattice gas

References: [4, 5]

We now return to the lattice gas of Lecture 1 and sketch its relation to the
equations of fluid dynamics.

In some sense, the continuum limit of the lattice gas follows similar arguments
to that for the diffusion equation.
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However there are two additional issues: symmetry and scale separation. We 
comment briefly on the first and in some detail on the second. 

1.2.1 Microdynamical equations 

Recall the model’s evolution: 

(c) 

(a) 

(b) 
A S 

A S 

A S 

Before After 

The particle dynamics evolve as  

ni(x + ci, t+ 1)  =  ni(x, t) + Δi[n(x, t)]. 

The quantities n = (n1, n2, . . . , n6) are  Boolean variables that indicate the 
presence (ni = 1) or absence (ni = 0) of particles. 

Particles move from sites x to neighboring sites at x + ci. 

Particles move with unit speed in the directions given by 

ci = (cos  πi/3, sin πi/3), i = 1, 2, . . . , 6. 

Δi ∈ {−1, 0, 1} is the collision operator. Example: the three-body collision: 

(3)
Δi = ni+1ni+3ni+5n̄ in̄ i+2n̄ i+4 − nini+2ni+4n̄ i+1n̄ i+3n̄ i+5, 

where n̄ i = 1  − ni and a subscript x is taken to imply “x mod 6”. 
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(2)
There is a also a two-body collision ∆i . Then

(2) (3)
∆i = ∆i + ∆i .

This is the entire dynamics, due to Frisch, Hasslacher, and Pomeau [4].

Note that ∆i conserves mass, ∑
∆i(n) = 0,

i

and momentum, ∑
ci∆i(n) = 0.

i

Using mass conservation, we sum the microdynamical equation over each
direction i to obtain ∑

ni(x + ci, t+ 1) =
∑

ni(x, t).
i i

Similarly ∑
cini(x + ci, t+ 1) =

∑
cini(x, t).

i i

These are the microscopic mass-balance and momentum-balance equations
of the lattice gas.

1.2.2 Macrodynamical equations of the lattice gas

Consider an area A of lattice sites enclosed by a perimeter S.

Mass conservation requires that∑∑
[ni(x, t+ 1)− ni(x, t)] = −(net mass flux out of )

x∈A i

S .

Now define the average particle occupancy 〈ni〉. The averages 〈·〉 are con-
structed so that they vary slowly in space and time—more on this later, when
we will refer to the macroscopic length scale as Lhydro.

In terms of the averaged quantities, we have
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•
∑

i〈ni〉: slowly varying mass.

•
∑

i〈ni〉ci: slowly varying mass flux.

We identify the left-hand side above as the time derivative of the mass and
the right-hand side as the divergence of the mass flux. Then

∂t
∑
〈ni〉 = −∂α

∑
〈ni〉ciα,

i i

where the α-component of the ith velocity vector ci is given by ciα, and
drepeated Greek indices are summed (i.e., XαYα =

We describe the momentum flux similarly, i.e.,

∑
α=1XαYα.)

∑∑
[ni(x, t+ 1)− ni(x, t)]ciα = α

∈A i

−(net flux of -momentum out of
x

S).

Averaging allows identification of

•
∑

i〈ni〉ciα: slowly varying α-component of momentum.

•
∑

i〈ni〉ciαciβ: slowly varying α-momentum carried by 〈ni〉 in the β-
direction.

Thus the LHS averages to the time derivative of α-momentum and the RHS
is the divergence of the flux of α-momentum:

∂t
∑
〈ni〉ciα = −∂β

∑
〈ni iβ

i

〉ciαc .
i

Now define the mass density

ρ =
∑
〈ni ,

i

〉

and the momentum density

ρuα =
∑
i

〈ni〉ciα.
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Substitution above then yields the continuity equation,

∂tρ = −∂α(ρuα),

and the macroscopic momentum-balance equation,

(0)
∂t(ρuα) = −∂βΠαβ ,

where
(0)

Παβ =
∑
i

〈ni〉ciαciβ

is the inviscid momentum flux density tensor.

1.2.3 Symmetry

The arguments above provide the basic foundation of the continuum limit
and its correspondence to real fluid dynamics.

However one should ask whether the appearance of terms like ciαciβ in the
momentum flux cause the fluid motion to be hexagonally symmetric (rather
than isotropic).

In the real world, the inviscid momentum flux density tensor takes the form

(0)?
Παβ = pδαβ + ρuαuβ

where p is the pressure and

1 α = β
δαβ =

{
.

0 else

Through symmetry arguments one may obtain the general form of the lattice
analog when the average velocity u is small. Expanding to second order, one
obtains

(0)
Παβ = p0(ρ)δαβ + λ 4

αβγδ(ρ)uαuβ +O(u ).

In real fluids, λαβγδ is isotropic, meaning that it is invariant under rotation.
The isotropy of the lattice gas turns out to depend on the symmetry proper-
ties of fourth-order tensors made∑from

ciαciβciγciδ.
i
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Surprisingly, it turns out that six velocities suffice for isotropy! (This result 
is indeed familiar in elasticity theory, where it is often shown that the stress-
strain relation in a hexagonally symmetric system is isotropic.) 

Note that a similar question could be asked for our random walk: Is a random 
walk on a lattice isotropic? 

In this case, in the continuum limit we no longer relate second-rank tensors 
(e.g., stress and strain) via a fourth-rank tensor, but instead we relate vec
torial quantities (mass flux and concentration gradient) via a second-rank 
tensor. 

One may then show that symmetry rests only on the isotropy of second-rank 
tensors formed from 

ciαciβ, 
i 

for which 4-fold symmetry (i.e., a square lattice) suffices for isotropy. 

Further information can be found in Ref. [5]. 

1.2.4 Separation of scales 

A related question of more general importance concerns the separation of 
length scales between that of the lattice unit and that of the fluid continuum. 

Because real fluids are made of atoms or molecules, our remarks below are in 
that context, but they easily translate to our lattice model. 

Consider the following macroscopic length scales in a flow: 

U 
l 3

l l1 2 
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Of the length scales li we define 

Lhydro : the smallest characteristic length scale of macroscopic motions. 

We are also interested in the mean free path 

Rmfp : the characteristic length scale between molecular collisions. 

Fluids may be regarded as continuous fields if 

Lhydro » Rmfp. 

When this condition holds, the evolution of the macroscopic field may be 
described by continuum mechanics, i.e., partial differential equations. 

To make this idea clearer, consider a thought experiment in which we measure 
the density of a fluid over a length scale R using some particularly sensitive 
device. We then move the device in the x-direction over a distance of roughly 
10R. 

Suppose R ∼ L1 ∼ Rmfp. Then we expect the density to vary greatly in space 
as in Figure (a) below: 

de
ns
ity

 

x/L x/L x/L1 2 hydro(a) (b) (c) 

We expect that the fluctuations in (a) should decrease as R increases. (Statistics 
tells us that these fluctuations should decrease like 1/N 1/2, where  N ∝ .3 is the average number of 

molecules in a box of size .. ) 

On the other hand, if R ∼ Lhydro (see (c)), variations in density should reflect 
density changes due to macroscopic motions (e.g., a rising hot plume), not 
merely statistical fluctuations. 
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Our assumption of a continuum implies that there is an intermediate scale,
` ∼ L2, over which fluctuations are small. Thus the continuum hypothesis
implies a separation of scales between the molecular scale, L1 ∼ `mfp, and the
hydrodynamic scale, Lhydro.

Both the lattice gas and real fluids provide the happy situation in which there
is a genuine “scale-gap” between phenomena like (a) and (c). Such situations
give confidence to the notion of a continuum and the partial differential equa-
tion that models it.

However in many “complex” problems, especially non-physical (i.e., biologi-
cal) problems, the existence of such a separation is not obvious. For example:

• Physical: flow through (fractal) fractures.

• Biological: ecological interactions between organisms.

In such cases it may be better to concentrate directly on connectivity and
the way it varies with scale.

We next address an elementary physical example of connectivity: river net-
works.
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