Course 12.141: Electron Microprobe Analysis - Hints and solution for Problem Set 4

(1) Note that in the equations, if " i " is the element being considered, " j " stands for all the other elements in the sample. Our samples have only two elements, Fe and Ni. So, when calculating parameters for Fe , " i " is Fe and "j" is Ni. For example, S_{i} for Fe will be,
$S_{F e}=C_{N i} * S_{F e-N i}$
where,
$S_{F e-N i}=($ const $)\left[\left(2 Z_{N i} / A_{N i}\right) /\left(E_{0}+E_{c(F e ~ K-s h e l l)}\right)\right] \ln \left[583\left(E_{0}+E_{c(F e ~ K-\text { shell })}\right) / J_{N i}\right]$
See p. 14, Eq 3.12 of Course Notes.
(2) When calculating a parameter for the specimen, you need to find a concentration-weighted average. For example,
$(\mu / \rho)_{\text {specimen }}^{\text {FeK } \alpha}=C_{F e} *(\mu /)_{F e}^{F e K \alpha}+C_{N i} *(\mu /)_{N i}^{F e K \alpha}$
Note when the concentrations of Fe and Ni are equal, $(\mu / \rho)_{\text {specimen }}^{\text {FeK } \alpha}$ becomes a simple average,

$$
(\mu / \rho)_{\text {specimen }}^{F e K \alpha}=\left[(\mu / \rho)_{F e}^{F e K \alpha}+(\mu /)_{N i}^{F e K \alpha}\right] / 2
$$

Also note that the standards are pure metals. So,
$(\mu / \rho)_{F e-s \tan \operatorname{dard}}^{\mathrm{FeK} \mathrm{\alpha}}=(\mu /)_{\rho e}^{F e K \alpha}=71.4 \mathrm{~cm}^{2} / \mathrm{g}$
$(\mu / \rho)_{N i-s t a n d a r d}^{F e K \alpha}=(\mu / \rho)_{N i}^{F e K \alpha}=90 \mathrm{~cm}^{2} / \mathrm{g}$
(3) Note that fluorescence occurs only when the energy of the X-ray being absorbed is higher than the critical excitation energy of the atomic shell of the element it is fluorescing. Since,
$E_{\mathrm{FeK} \alpha}(6.404 \mathrm{keV})<E_{\mathrm{C} \text { (Ni K-shell) }}(8.332 \mathrm{keV})$,
$\mathrm{FeK} \alpha$ cannot fluoresce Ni . So the fluorescence correction factor of Ni is equal 1.
(4) Your graphs should show the following:
(A) Atomic number correction deviates more and more from 1 as the composition of the sample deviates more and more from the pure element standards.
(B) There is a high positive absorption correction for $\mathrm{NiK} \alpha$ at high Fe contents because $\mathrm{NiK} \alpha$ is absorbed in Fe .
(C) There is a high negative fluorescence correction for $\mathrm{FeK} \alpha$ at high Ni contents because $\mathrm{NiK} \alpha$ fluoresces $\mathrm{FeK} \alpha$.

Following are the graphs you should obtain:

MIT OpenCourseWare
http://ocw.mit.edu

12.141 Electron Microprobe Analysis

January (IAP) 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

