Climate Sensitivity, Forcings, And Feedbacks

Forcings and Feedbacks in the Climate System

Climate Change 2007: The Physical Science Basis. Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, FAQ 1.2, Figure 1. Cambridge University Press. Used with permission.

Forcings and Feedbacks

Consider the total flux of radiation through the top of the atmosphere:

By chain rule,

$$F_{TOA} = F_{solar} - F_{IR}$$

Each term on the right can be regarded as function of the surface temperature, T_s , and many other variables x_i :

$$F_{TOA} = F_{TOA}\left(T_s, x_1, x_2, \dots, x_N\right)$$

$$\delta F_{TOA} = 0 = \frac{\partial F_{TOA}}{\partial T_s} \delta T_s + \sum_{i=1}^N \frac{\partial F_{TOA}}{\partial x_i} \delta x_i$$

Now let's call the Nth process a "forcing", Q:

$$\begin{split} \delta F_{TOA} &= 0 = \frac{\partial F_{TOA}}{\partial T_s} \delta T_s + \sum_{i=1}^{N-1} \frac{\partial F_{TOA}}{\partial x_i} \delta x_i + \delta Q \\ &= \frac{\partial F_{TOA}}{\partial T_s} \delta T_s + \sum_{i=1}^{N-1} \frac{\partial F_{TOA}}{\partial x_i} \frac{\partial x_i}{\partial T_s} \delta T_s + \delta Q \end{split}$$

Then

$$\frac{\partial T_{s}}{\partial Q} \equiv \lambda_{R} = -\frac{1}{\frac{\partial F_{TOA}}{\partial T_{s}} + \sum_{i=1}^{N-1} \frac{\partial F_{TOA}}{\partial x_{i}} \frac{\partial x_{i}}{\partial T_{s}}}$$

Note that feedback factors do NOT add linearly in their collective effects on climate sensitivity

Examples of Forcing:

- Changing solar constant
- Orbital forcing
- Changing concentrations of non-interactive greenhouse gases
- Volcanic aerosols
- Manmade aerosols
- Land use changes

Solar Sunspot Cycle

Image by MIT OpenCourseWare.

Satellite measurements of solar flux

Figure 2.16. Percentage change in monthly values of the total solar irradiance composites of Willson and Mordvinov (2003; WM2003, violet symbols and line) and Fröhlich and Lean (2004; FL2004, green solid line).

Climate Change 2007: The Physical Science Basis. Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Figure 2.16. Cambridge University Press. Used with permission.

X-Ray Flux

This image has been removed due to copyright restrictions. Please see the image on page http://sidstation.loudet.org/03-solar-activity/data/flux.png.

Normal solar cycle variations in solar radiation

This image has been removed due to copyright restrictions. Please see Foukal, et al. "Variations in Solar Luminosity and their Effect on the Earth's Climate". *Nature* 443 (2006): 161-6. The image is also on page http://blogs.edf.org/climate411/wp-content/files/2007/05/solar_energy.jpg.

Inferences based on Models of Solar Variability

Figure 2.17. Reconstructions of the total solar irradiance time series starting as early as 1600. The upper envelope of the shaded regions shows irradiance variations arising from the 11-year activity cycle. The lower envelope is the total irradiance reconstructed by Lean (2000), in which the long-term trend was inferred from brightness changes in Sun-like stars. In comparison, the recent reconstruction of Y. Wang et al. (2005) is based on solar considerations alone, using a flux transport model to simulate the long-term evolution of the closed flux that generates bright faculae.

Climate Change 2007: The Physical Science Basis. Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Figure 2.17. Cambridge University Press. Used with permission.

Climate Forcing by Orbital Variations

This image has been removed due to copyright restrictions. Please see the photo on page http://www.detectingdesign. com/milankovitch.html.

Milutin Milanković, 1879-1958

Image by MIT OpenCourseWare.

Climate Forcing and Response

Image courtesy of Global Warming Art.

Strong Correlation between High Latitude Summer Insolation and Ice Volume

This image has been removed due to copyright restrictions. Please see Figure 2E on page http://www.people.fas.harvard.edu/~phuybers/Doc/integrated_science2006.pdf.

This image has been removed due to copyright restrictions. Please see the image on page http://en.wikipedia.org/wiki/File:Carbon_History_and_Flux_Rev.png.

Variation in carbon dioxide and methane over the past 20,000 years, based on ice core and other records

Climate Change 2007: The Physical Science Basis. Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Figure TS.2. Cambridge University Press. Used with permission.

CO₂ and Climate

Climate Change 2007: The Physical Science Basis. Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Figure 6.1. Cambridge University Press. Used with permission.

Recent History of Volcanic Eruptions

Climate Change 2007: The Physical Science Basis. Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Figure 2.18. Cambridge University Press. Used with permission.

Global Anthropogenic Sulfur Emissions

Figure 1–Global sulfur dioxide emissions from this study (thick line) and several other recent estimates (see text). Note that the Lefohn *et al.* estimate does not include all anthropogenic emissions sources. References not shown on the cart are: GEIA (Benkovitz *et al.*1996); EDGAR 2.0 (Olivier *et al.*1996); EDGAR 3.2 (Olivier and Berdowski, 2001); EDGAR-HYDE (Van Aardenne *et al.* 2001); and SRES (Nakicenovic and Swart 2000).

Variation with Time of Natural Climate Forcings:

Climate Change 2007: The Physical Science Basis. Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Figure 6.13. Cambridge University Press. Used with permission.

Examples of Forcing Magnitudes:

 A 1.6% change in the solar constant, equivalent to 4 Wm⁻², would produce about 1°C change in surface temperature

 Doubling CO₂, equivalent to 4 Wm⁻², would produce about 1°C change in surface temperature

Contributions to net radiative forcing change, 1750-2004:

Climate Change 2007: The Physical Science Basis. Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Figure 2.20. Cambridge University Press. Used with permission.

Examples of Feedbacks:

- Water vapor
- Ice-albedo
- Clouds
- Surface evaporation
- Biogeochemical feedbacks

Estimates of Climate Sensitivity

$$\frac{\partial T_s}{\partial Q} \equiv \lambda_R = \frac{S}{1 - S \sum_{i=1}^{N-1} \frac{\partial F_{TOA}}{\partial x_i} \frac{\partial x_i}{\partial T_s}} \frac{\partial T_s}{\partial T_s}$$
$$S \equiv \left(-\frac{\partial F_{TOA}}{\partial T_s}\right)^{-1}$$

Suppose that $T_s = T_e + constant$ and that shortwave radiation is insensitive to T_s :

$$F_{TOA} = -\sigma T_e^4, \quad \frac{\partial F_{TOA}}{\partial T_s} = -\frac{\partial}{\partial T_s} \sigma T_e^4 = -4\sigma T_e^3 = -3.8Wm^{-2}K^{-1}$$
$$S = 0.26K \left(Wm^{-2}\right)^{-1}$$

Examples of feedback magnitudes:

 Experiments with one-dimensional radiativeconvective models suggest that holding the relative humidity fixed,

$$\left(\frac{\partial F_{TOA}}{\partial q}\right) \left(\frac{\partial q}{\partial T_s}\right)_{RH} \cong 2 W m^{-2} K^{-1},$$
$$S\left(\frac{\partial F_{TOA}}{\partial q}\right) \left(\frac{\partial q}{\partial T_s}\right)_{RH} \cong 0.5$$

This, by itself, doubles climate sensitivity; with other positive feedbacks, effect on sensitivity is even larger

Ice-Albedo Feedback

Feedbacks in Climate Models

Climate Change 2007: The Physical Science Basis. Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Figure 8.14. Cambridge University Press. Used with permission.

Equilibrium temperature change associated with the Planck response and the various feedbacks, computed for 12 CMIP3/AR4 AOGCMs for a 2 × CO₂ forcing of reference (3.71 W m⁻²). The GCMs are sorted according to ΔT_s^e .

From Dufresne and Bony, J. Climate, 2008

Image by MIT OpenCourseWare.

Changes in global mean cloud radiative forcing (W m–2) from individual models

MIT OpenCourseWare http://ocw.mit.edu

12.340 Global Warming Science Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.