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Stress and Strain

Reading: Section 2.3 of Stein and Wysession

In this lecture, we will examine using Newton’s 2™ Law and a generalized form of
Hooke’s Law to characterize the response of a continuous medium to applied forces

The stress tensor describes the forces acting on internal surfaces of a deformable,
continuous medium.

The strain tensor describes the distortion of (or the variation in displacement within) the
body

In order to produce wavemotion, we need
- aspatial change in stress
- away to describe the causal relationship between stress and strain

In 1-D, for a purely elastic medium, this relationship turns out to be quite simple:

where o is stress, € is strain, and E is Young’s modulus (which must have dimensions of
stress, as strain is dimensionless.

The assumption of a purely elastic medium is one that we will make most of the time in
this class. The relationships between stress and strain are dependent on the
characteristics of the medium.

Sidebar: Another possibility occurs for a viscoelastic medium:

where o is stress, € is strain rate (3&/6t), and ( is viscosity.

In three dimensions, things become somewhat more complicated. A simple example
should convince that the straightforward linear relationship given above can no longer
hold. If we stretch a rubber band along its long axis (in this case applying a oy)...
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We can describe the strain along the x-axis in the normal way,
[+ Al
£, =
[

but we can see that despite the fact that o, = 0, €, does not equal zero (and a similar case
could be made for the z direction) so we must turn to tensors to formulate our Hooke’s
Law for three dimensions.

We can represent the stress tensor in the form oj; , where I represents the direction of the
normal vector to the surface upon which the stress acts, and j represents the direction of
the stress. For three dimensions, each of these can be broken down into X, y, and z
components. Consider the volume element below.

Figure 2.3-2: Traction vectors on the faces of a volume element.

x'r[!]

X3 i \

‘Tg)l -l-!z]
5 fReset SRR -
X / o T
] P R~
X TI]] -

Fig. 2 (After Stein & Wyssession, 2003)

Strain can be represented by a similar tensor, in the form g The relationship between
stress and strain must therefore take the form of a 4™ order tensor that we call the
elasticity (or stiffness) tensor. The elasticity tensor gives us information about the
medium.

We can now write Hooke’s Law in a general form.

Oy = Ciu€u

Later, when we look at the Lamé parameters, remember that they must reside somewhere
in the beast Cijkl.

This equation becomes very complex if it turns out that the elements of ¢ are dependent
on stress or strain (i.e. non-linear), but for small deformations we assume that this is not

the case.

So far we have made the following assumptions (a list that will expand as we proceed)

Assumption #1: Our medium is purely elastic
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Assumption #2: The elements of ¢ are independent of stress and strain

Next, we will develop Newton’s second law towards our goal of expressing an
equation of motion.

Newton’s second law simply states:

ze =ma;

Starting with the left hand side of the equation, we submit that the applicable forces
fall neatly into one of two categories:

1. Body Forces: forces such as gravity that work equally well on all particles within
the mass- the net force is proportional (essentially) to the volume of the body (f;).

2. Surface Forces: forces that act on the surface of a body- the net force is
proportional to the surface area over which the force acts.

The surface force Fgacts on a surface element dS which has a unit normal vector n.
The forces acting on the surfaces of a volume element can be described by three
mutually perpendicular traction vectors using the same convention that we described
earlier for the stress tensor on a volume element. We define the traction as the limit
of the surface force per unit area at any point as the area becomes infinitesimal

lim F
— — =(T.,T,,T
=0 (1,,7,,T;)

Traction=T

and recall from our volume element (this time using x;, X, and x3 instead of X, y, and
z for coordinate axes) that each traction can be thought of as the sum of forces acting
upon an infinitesimal surface, broken down into normal and tangent components,
such that

T, =(T,.T,.T;5)

T, =(Ty,, Ty, Ty)

T, =TTy Ts)

An equivalent notation used in the textbook (Stein and Wysession) gives
L=0"10"1") | et.

where the upper index indicates the surface normal and the lower index gives the
force component direction.
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This set of nine terms that describes the surface forces can be grouped into the stress
tensor cji. The tensor’s rows are comprised of the three traction tensors, presented
below in such a way as to demonstrate the equivalence of various methods of notation.

1) Q) Q) Q)]
Oy w Ok O, O Oy T T, T, T,
_ _ _ 2) | _ 2) 2) 2)
0,;=|0y, 0,, 0, |=|0y O0pn Oy|= T =T T, T,
3) 3) 3) 3)
O-zx zy O-zz 03 1 032 033 T T'l T2 T3

Backing up a bit, we return to our discussion of Newton’s 2™ Law, this time
separating out body forces (f;) from surface forces (T;)

ZE =ma,;

which we can expand to:

[ f.dv +[TdS = ma,
4 S

Looking at this equation, we see that we are adding a surface integral to a volume
integral, so we should want to convert one to the other form. Since we have mass on
the right hand side (which is an integration of density over volume), we should elect
to convert the surface integral into a volume integral, which can be done using the
Gauss (Divergence) Theorem.

For the time being, we will leave this idea to simmer, but will return to collect it when
we develop equations of motion at the end of this lecture.

Before we continue, let’s pause for a moment to collect our bearings:

If we look again at the stresses, we recall that we have defined them as a force per
unit area, so we can think of them as similar to pressures, with units of Pa.

| 1atm =1 bar = 1000 mbar = 10’ Pa_|

Strain is defined as a change in some dimension (length, volume, angle) over that
same dimension, so it is by definition dimensionless. This means that our elasticity/
stiffness tensor cjjq must also have dimensions of stress (Pa).

To develop a feeling for some typical values, we present a brief table of values for
lithostatic stress at various depths.

Lithostatic stress = The normal stress due to the weight of the overlying rock
(overburden)
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Depth Typical values for lithostatic stress
410 km 14 GPa
660 km 23 GPa
CMB 130 GPa
Center of the Earth 360 GPa

We can see that these values are quite extreme. Actually, for seismic propagation we
are more interested specifically in non-lithostatic stresses, but more on that later.

The stress tensor gives a traction vector acting on an arbitrary surface element within
the medium. We can show this by presenting the stress tensor on an infinitesimal
tetrahedron, where one face is a surface element with a normal vector n that is not
aligned with any coordinate axis. A traction is applied to this surface. The other
three faces of the tetrahedron are each perpendicular to a coordinate axis and to each
other.

Y 033

Fig. 3 (After Stein & Wyssession, 2003)

We can decompose the traction into components acting on our perpendicular surfaces.
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T =(T,,T,,T})

Note that in doing this we have implicitly made a third assumption, namely that

| Assumption #3:  Volume elements within the medium can be treated as continuums

Each of our Tj also have three components (a total of nine elements), so we can
rewrite the stress tensor as:

T;dS = GliASl + 0-2[AS2 + O-BiASZ»

We can also see that there is a relationship between angles (and surfaces),

specifically that AS; =cosy S where 7 isthe angle between the normal vector
and the ith coordinate axis. This means that we can rewrite our stress tensor as a
sum of scalar products.

T,=0,-n+0, N,+0; N

or in Einstein summation

T, =0, n;

Likewise we can look at the elements of the stress tensor

— 7
O = Tz

In the absence of body forces, the stress tensor is treated as symmetric (6;=Gji), SO
there are only six independent elements. The diagonal elements represent the normal
stress and the off-diagonal elements the shear stress.

Assumption #4: The stress tensor is symmetric (0;j=0j;)

A symmetric tensor can also be rotated into a principal coordinate frame such that
the tractions become parallel to the normals (i.e. the shear stresses go to zero) In
other words,

T =0c.n.=0,-n.=n,

! Jt J g J 1

which is a straightforward eigenvalue/eigenvector problem.

(o;—A0,)n; =0
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o, —4 O O3
detf o, 0,-4 o0, |=0
O3 O3 O3 —A

Solving the determinant for zero gives a cubic equation, therefore three solutions for
A (eigenvalues) which can be plugged back in to get the principal stress axes

(eigenvectors).
o, 0 O
c=/0 o, O
0 0 o,

In seismology, we typically order these such that 6, > 6, > o3 (i.e. o) is the most
compressive stress).

Some situations in which the sigma values have specific relationships are of particular
interest.

1. Uniaxial stress (0,0, o©,=03=0)
2. Plane stress (61 #0, 0, =0, 03 #0)

3. Pure shear stress (6; = -63,6,=0)
(This is actually a special case of plane stress)

N

Isotropic stress (6 = 6, = 63=P)
(also termed lithostatic/hydrostatic stress)

As we stated earlier, in seismic propagation, we are interested in the non-lithostatic
stresses, 1.€. that which is left over when we subtract out the lithostatic stress.

Deviatoric Stress = the remaining stress after the effect of the mean stress
(P=1/3 (o1 + 0, + 03)) has been removed.
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Strain

When stress is applied to a non-rigid body deformation occurs. This deformation can be
described by the strain tensor. Strain is a relative measurement and is therefore

dimensionless.

Undeformed

Change 1in relative displacement during deformation.

Figure by MIT OCW.

(Adapted from Stein & Wyssession, 2003)

In 1D the strain is given by: ¢ _ = M - O;“ = l( L @) . where we used
} ax a2\ 6x

the linearization: u(x+ &) = u(x)+ du(x) . This is justified as long as the change in

displacement is smooth over a distance dx:

Sit = Ig{i\ (infinitesimal strain theory).
- Ox
i/
u(x) =u(x,)+ Ma
ox

-~

.
Ow, Ou, Ou,

?\1 ox, oOx d,
u(x) =u(x,)+ d, |=u(x,)+Jd
etc d;

Where J 1s the Jacobian transformation tensor.
J=g+Q

¢ 1s the symmetric matrix strain tensor &,
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o 13w  ow | 1fduy  duy
ox, 200x, odx, ) 2lax; ax,
o = | Yo, O oy 13wy Oy
"2l ok Ox, dx, 2\ 0x;  ox,
1fouy | o | 1[0u3  duy 9uy
2\0x; ox;) 2{0x, oOxy 9xy

Q is the antisymmetric matrix rotation tensor Q,

4 - - ’ - o, AR
0 1w o dfon o
2\ 0w, Ox, 20 v, Oxp
1 A £ A
0, = _ 1o oy 0 l( )
i 21 éx, ox 2
1 1
= L) 0
2( ) 2

In seismology we are interested only in the distortion of the material (strain tensor) and
not the rigid body rotation (rotation tensor).

The trace (tr) of the strain tensor is

~ 3
ou, Ou, ou ou
{r(a) =14y 243

+— = Z—' = V., which is also known as the cubic dilatation (®).
oy, ox, Ox, Ty
Divergence of the displacement field relates to the relative change in volume. The trace
of the rotation vector is zero, 1.e. a rigid body rotation does not involve a volume change.

More on Gy
This 4™-rank tensor makes things complicated because it has 81 elements, so we must use
symmetry to simplify C;y Because of symmetry in o,

(10)  Ciu= G
Because of symmetry in E,

(11)  Cju= Cine= GCine
Therefore, we have reduced Cjjq to 36 independent elements. Another way to look at it is that
there are 6 independent elements of o as well as 6 independent elements of E, giving 36

independent elements to Cj. Furthermore, one can also demonstrate using the idea of strain
energy that

(12)  Ciju = Cuais,
further reducing the tensor to 21 independent elements.

Unfortunately, displacement can be observed in at most 3 directions, meaning that only 3
observations are available to deternmine 21 unknowns. We need to make further assumptions
to reduce the number of unknowns. Let’s assume that we are working in an isefropic medium,
i.e. the medium has the same physical properties in all directions.
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Isotropy allows Cjjq to be expressed in only two independent terms, giving

(13) Cum = ?\.SUSH + LI(S,kSﬂ + Ems_,k),
where A and 11 are Lamé parameters (named for Gabriel Lamé, a 19 century French
mathematician) and &;, &y, etc. are Kronecker symbols such that

(14) &;=0wheni#]

(15) &;=1wheni=]

As a consequence of the linear behavior of stress and strain, A and p are not dependent on
strain. p refers to the rigidity, or shear modulus, of the medium. 1 measures the resistance
against shear, 1.e. an easily sheared material has a smaller i than one that is difficult to shear.
For a fluid, p=0.

2 does not have a specific physical characteristic to make it intuitively understandable. Tt 1s
defined with respect to the shear modulus using the bulk modulus, K, such that

(l6) K=r+2us3
The bulk modulus measures a material’s incompressibility, a relative change in volume
(cubic dilatation) A due to change in pressure P, such that
K =-8P/3A
A material that is hard to compress or has a smaller relative volume will give a higher bulk
modulus than a material that is easy to compress or has a larger relative volume.

A note on dimensions:
Because strain is dimensionless, Ci must have units of stress. Thus, A and p are given in Pascal.

Using equation (13), Young’s modulus can be written in terms of Lamé’s parameters for an
isotropic medium:

(17)  E=0w/Exx= GA21)p 7/ (A+p)

Additionally, we often see Poisson’s ratio v, where

(18) v=~A/200+w)

Poisson’s ratio is often used to characterize the elastic properties of a medium, for example, for a
fluid with p=0, v=0.5 . As the rigidity of a material increases to infinity, Poisson’s ratio
approaches 0.

A Poisson’s medinm is an isotropic material with Lamé parameters such that A = p, giving
v=0.25 . This value of Poisson’s ratio is reasonable for many crustal and mantle rocks, so it is
often assumed in calculations. In the inner core, v = 0.4, suggesting that the inner core is more
“mushy” and sponge-like than the mantle, but still maintains some rigidity.

When considering P- and S-waves in the crust and mantle, we can assume a Poisson’s medium in
order to relate them, such that

(19)V,= V,.3
Now, expanding c;; for an isotropic medium with perfect linear elasticity, we get
rAA+2uer; 2uepn 2ueps 1
(20) o= Cijuen= | 2uer M+ 2uen  2uen
L 2uems 211ea; AA 4 2es; 4

Notice that the off-diagonals are pure shear stresses, and they are only dependent on . The
diagonals refer to the normal stress and depend on both p. A, and A (i.e, change in volume).
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Aside:

Generic anisotropy takes us back to 21 unknowns in Cj. so we have to make assumptions about
the symmetry of the medium. For instance, in an olivine-rich medium, such as the mantle, the
olivine crystals tend to align themselves in a constant direction. Thus, seismic waves will
propagate faster aleng the crystal alignment than in other directions, creating anisotropy and
necessitating 5 independent elements in Cyjy (hexagonal symmetry; transverse isotropy).

Equation of Motion

Let us revisit the stress tetrahedron. We have a traction T that can be broken up into 3
components, (T;, T, T5). We also know, using Newton’s 2 Law of Motion and a force balance
on the tetrahedron, that

(21)  ZF=T;3S — (0;mi8S + 6pm8S + 633138S) + £dV = ma = p (5°u/6t%) dV

where f;dV represents the body forces on the tetrahedron. Ignoring the body forces and assuming
a=0, this gives us

(22) Ti=oyn;,

which is true for pure equilibrium.

Now, consider an accelerating seismic wave. The equation of motion will be

(23)  (T;i- ogny)dS + £dV = p (57uy/5t)) dV

If the traction cancel, i.e., T; - ojn;, equation (22) would give

(24)  f=p (8*uy/5tY), that is acceleration would only be due to the body forces;

but if there is a net change in stress, (T; - ojjn;) can be considered as the non-lithostatic
(deviatoric) stress, o3 . Therefore,

(25)  o5'wdS +£dV = p (3'uy/5tY) dV

From now on. o;; will be used to refer to the deviatoric stress, o’

Now, to develop equation (25) further we want to get rid of either &S or dV. We will use Gauss’
Divergence Theorem to transform a surface integral into a volume integral. Gauss’ theorem uses
flux to relate volume to surface area.

Consider a field a with a flux through a surface with area &S:

‘/v n

88 =ndS

The total flux of the field in and out of the surface is given by

(26) [a.dS = [andS

which is related to the amount of field generated or absorbed in the volume within dS. In other
words

(27)  sfandS= [V adV,

where V" a is the source (or sink) of the field. This is Gauss’ Divergence Theorem. If V" a =0,
the field is source/sink-free.
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So, taking equation (25) and integrating both sides, we get

(28)  JouudS + [fdV = [p (5"u/8t%) AV

Now we apply Gauss® Theorem and combine terms to get

(29)  [(3oy/dx; +£)dV = [p (5'u/5t") dV.

which leads to

30) p (Szlllr"ﬁtz) = 80y/0%; T fi = Gy j T /i (Stein and Wysession not.) = 8;G; + f; (van der Hilst not.)

In vector form, we get the equation of motion,
Bhpi=f+Vo

Equation (30 or 31) is known as either Navier’s or Cauchy’s Equation of Motion, as they
independently worked on developing it in the 19 century.

updated by Shane



