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12.510 Introduction to Seismology

Feb. 29 2008:

We have introduced the equations:
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and
with @ = [(A+2u)/p] V2 and B= (pu/p)t/2

These equations can be solved using 3 different methods:

1. D’Alembert’s solution (most ‘physical’ approach)
2. Separation of variables
3. Fourier Transforms (mathematically, the most powerful method)

There is a whole class of theoretical development in applied maths that uses Fourier
Integral Operators (FIOs)

1.D’Alembert’s Solution:

Take as an example, the wave equation:

¢ =a’V'
And the function: P(X.7) = f(x—ct)+g(x+cr) (45)
The first term: f(x — ct) represents propogation in the positive x-direction
The second term: g(x+ct) represents propogation in the negative x-direction
¢ = the wave speed or phase speed/velocity

Consider the profile of the wave at a time f; and at some later time £,

Figure 4:
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Example of a plane wave propagation in positive x-axis; function f( ) remains same if
argument (the phase!) remains same; this happens if x increases when t increases —
motion in positive X axis.

(x-ct) is known as the phase of the wave.
X~ %

1~ 0

The phase speed is given by: C — (46)

Figure 5: Diagram to illustrate the concept of wavefronts:

Wavefront = surface connecting points of equal phase

Ray &

A wavefront is a line in 2d (or surface in 3d) connecting points of equal phase.
In reality, the wavefronts are circular, but locally they behave as a plane wave.
All points along the wave-front have the same travel-time from the origin.

The relationship between the wavenumber (k) and angular frequency (®)is given by:
0

k=— 47)
C

2
The relationship between wavenumber (k) and wavelength (A) is given by: k = 7” (48)

X
2t

. )—)(kx—a)t)(in one

So we can re-write the phase in terms of Wavenumber:(
dimension)

In 3 dimensions, this becomes: (kXX +k,y+Kk,z— a)t) or (kx—at)

The harmonic function is a solution to the wave equation:
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¢ =cos(kx—ot)+isin(k«—ot)=expi (kx—ot)  49)
Where we have used the identity: exp (ix) =cos(a) + isin(@)  (50)

2. Separation of variables:

Using the method of separation of variables, we trial a solution of the wave equation of
the form:

o(r,y,2,t) = X (@)Y (y)Z(2)T () 4,

Substituting this into the equation: ¢ = CZV2¢ gives:

1d2X+ 1d‘31~’+ 1d*Z 1 d*T
X de?2 Y dy?  Zd:?2 2T dt?

(32)

To satisfy this equation, each term must be equal to a constant and the constants must
2

sum to zero. We choose the constants: _ |2 _ k2 _ k2 @ | respectively
X y z 2

C
aj% FRX = 0 — eFikaX
% 4 kyz}’ _ ), pEikY
%Jr k27 = 0 — etikeZ
% LT =0 s eET

(33)
Applying the condition that these constants must sum to zero gives us the dispersion
relation:
2 2 2 @) - - . -
ki +k; +k.—(—)" =0 dispersion relationship.
¢ (34
Substituting the solutions for X,Y,Z,T back into the original trial solution:

oz, y,2,t) = X(x)Y (y)Z(2)T(t)

E.il:;k-x—w' t)

™
o

Gives our final solution of the form: (55)

Note: Wavenumbers and the wavevector:
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We have already defined:

27

B

o

k=
The wavevector is: k = (kx-k_,,‘k: ) and gives the “direction” of the wave.

The length of the wavevector is the wavenumber: Ik‘ S k (56)
C

Our solution is effectively harmonic functions that propogate in the direction of k.

The full solution is a superposition of plane waves:

The displacement is relatec O(k X) - kz eﬁ'klx_w‘” (57)

u=ve (58 )

u(x,t)=Veg(x,t) (59

So u(x,1)=(0,0,ik_) Aexp{i(k.z — wt)} (60)

The displacement vector has harmonic wave character and propogates in the z direction

The imaginary part of the diplacement vector is associated with the amplitude of the
wave

The propogating part is found by taking the real part of this displacement vector.
u (x,1)=(0,0,ik,) Aexp{i(k.z — wt)} = ik [cos (k.z — wt) + isin(k, — wt)] (61)
The real part of this is: Re [u(x, t)] =—k_sin(k. — wt) (62)

Note: The Helmholtz equation:
If we consider solutions to the wave equation: ¢ = ,>V>¢ in 1d, of the form ¢ = eilkx—wt)

We can differentiate with respect to time get:

z
%; = —w® ¢ (63) Substituting into the wave equation gives:

?31#1’-:"_';4' =0Q (64) and } = E so, we have:

v% ¢ 4+ k*¢ = 0 (The Helmholtz equation) (65)
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A lot of imaging is done in the frequency domain by finding solutions to the helmholtz
equation.

3. Fourier Transforms:

Fourier transforms allow us to understand the relationship between the space-time (x,t)
and wavenumber-frequency (k,«) domains.

In one dimension, the forward and reverse fourier transforms between the space-
frequency and space-time domains are given by:

iy

—00 o —

bixw) = [ ol et ox ) = 5= [ Bxw)e s @

(Note: in seismology, we normally take the exponential as having a positive sign when
we are transforming into the space-frequency domain, however this is simply a
convention)

Similarly, we can use fourier transforms to convert between the space-time and
wavenumber-time domains. In 3d the fourier transforms between the space-time and
wavenumber-time domains are:

®(k,t) = f B(x, 1) eXTdIr — B(x, 1) = f D(k, t)e~**dk,dk,dk. (67)
v k

Combining these gives the double-fourier transform:

1 T s} i
O(x, t) = {.ﬁ?’T}F/ /f B (ka, by, w, 2) e ke, dleydw (©68)

Note that k. does not appear in this equation. This is because, k. k. k_ are related via

the dispersion relation.

"

k2 + kf. +k> - (E) =0 dispersion relationship.  (69)
c

Hence, if we have specified the angular frequency, k, and k, it follows that k_ has

already been determined.

Numerically, this double fourier transform is very difficult to work with.

Note: Synthetic seismograms:
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A synthetic seismogram is given by a plane-wave superposition.
Suppose we want to make a synthetic seismogram that looks similar to the wave.

We do not need to integrate over the full range —7 < kX <7 and —7 < ky <,

because this implies we do not know anything about the direction of the wave.

A synthetic seismogram can be produced by limiting the integration over directions
k, = dk and frequency o, + dw.

wig + dw ko-+dk
o(x., t) // D (ko by w, 2) e X0 dk dk, dw
ki

—dk
0 (70)

‘L wig—dw

The integrand ¢(K ,K ,®Z) is the amplitude or weight.

X1 yl

Slowness:

We have see already that the modulus of the wave-vector gives the wavenumber:

K= k2 + K2+ k2 =~
- i -
In 2d, we have: ‘k‘ = k> +Kk :VEV (71)

Figure 6:

& In figure 6, the arrow is used

- for a ray and the dashed line is
used for a wavefront. The
wavenumber k indicates the
direction of the ray. The angle i
is both the ‘take-off” angle and

k= (ke k) ..
" the ‘angle of incidence’

For a P-wave, the wavenumber is given by: ka —“  and for the S-wave, the wavenumber
94

is given by kﬂ = @

9] W
Since, in general: f < « it follows directly, that: kﬂ =—>k =— (72
(04
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Since ka:%) gives the length of the vector representing the P-wave and k 5 = @ represents

the length of the vector representing the S-wave, it follows directly that P-waves ‘dive’
less steeply into the medium than S-waves.

Figure 7:
> X
P
S
A4 z

S
The phase ‘speed’ c, is given by: C= E (73) and is a vector in the direction of

propogation

dx
At the surface, we measure: C, = E (74) which is the ‘apparent’ velocity/speed

Horizontal slowness:

sin(t) _ds = ﬂ = c[ij =cp (75
dx C

dx y
1 sin(t) .
p=—= = horizontal slowness = ray parameter (76)
C Cc

X

This follows from Snell’s law

Vertical slowness:

We know that: C, =(C,,C,)
1 cos(i)
The vertical slowness is given by: 1 = — = (77)

Combining the vertical and horizontal slowness:

2 2_sin2t COSzt_i (78)
prI =Tt T

C C c

Rearranging this gives:

n=+1/2—p*
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So, the vertical slowness does change with depth, because c is a function of depth. The

vertical slowness (77) is zero if i — p2 (which represents a horizontally propagating
2

C
wave)

1 is imaginary for evanescent waves. (This is important for understanding the
behaviour of surface waves).

There is a direct relationship between the wave-vector and the slowness components:

@
K= —
C

k =2 =wp (80)
CX

X

k:

Z

= on @81)

O

k=(k.k,)=(op,on) =a(p.n) 62

Notes: Katie Atkinson, Feb 2008

Figures from notes of Patricia M Gregg (Feb 2005) Kang Hyeun Ji
(Feb 2005)



