
State Variable Equations
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Apparent (Empirical) 
Activation Parameters
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Generation

Recovery

Recrystallization

Lattice Friction 

Precipitates

Dislocation Interactions

Source/Sink

Orowan’s Equation
(Kinetic Equation)



Frank-Read Source

• Force balance gives

• The dislocation density is 

• Then 

2
b
R

μσ =

1 2/L ρ −=

1 2

2

/

crit
bμ ρσ =



Work Hardening and 
Recovery

• At steady state, hardening = recovery
• If square root of disl. dens. proportional to mean 

free path,
and if density is a function of stress 2 , 
then can show that 
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Thermodynamics of
Glide and Climb

• Line glide resistance
Thermal activation
Applied Stress

• Work done on mat’l.
Dissipated energy
Force on dislocation
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Velocity Kinetics

• If obstacle can be overcome by thermal activation
(e.g. lattice friction, cutting of soft ppts., unraveling attractive junctions)
� ΔL>>a1a1’ then ΔL=λ (where λ is the dislocation spacing)

tg << to e.g. Cross slip in FCC metals
� ΔL≅a1a1’, obstacle met as soon as overcome, 

Glide-controlled Creep
• Obstacles can’t be overcome but may be avoided by 

climb,
Recovery-controlled Creep
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Recovery Processes
• Recovery-removal of defects

– Recovery processes
• Collapse of dipoles
• Loop collapse
• Annihilation
• Sub-grain boundary annihilation
• Climb and glide to grain boundary, surface
• Sub-grain boundary coarsening

• Recrystallization-creation and motion of high angle grain  
boundaries
– Recrystallization Processes

• Grain growth
• Static recrystallization
• Dynamic recrystallization
• Chemically induced gb migration



Power Law Creep
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• n combined effect of density and mobility terms
• Fugacity and chemical potential of phases may affect 

dislocation mobility
• Debye frequency, shear modulus and molecular volume
• For specific models see Kohlstedt et al., and Al et Kohlstedt

95. 



Competition between Diffusion 
and Dislocation Creep

• Dislocation Creep:

• Diffusion Creep

• Composite Flow (Ter Heege et al.)

• State Variable: Grain size
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Low Temperature
High Stress Laws

(Other Creep)
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