Chia-Hui Chen
September 21, 2007
Lecture 8

Irish Potato Famine, Network Externalities and Uncertainty

Outline

1. Chap 4: Irish Potato Famine
2. Chap 4: Network Externalities
3. Chap 5: Uncertainty

1 Irish Potato Famine

Typical Giffen good. In Year 1845-1849, people consumed more potatoes when the price increased. (Figure (1)

2 Network Externalities

Network externality. One person's demand depends on the demands of other people.

- [Bandwagon effect (Figure 22] Positive network externality. When more people buy, you will buy more.
Example. iPod: buy to be in style.
- Market demand more elastic than real demand curve.
- Seller sets lower price.

Example. Operating system: more software available.
Example. Internet telephone.

- [Snob effect (Figure [3]] Negative network externality. When others buy, you will not buy.
- Market demand more inelastic than real demand curve.
- Seller sets Higher price.

Example. Designer clothes: want to be special.

Figure 1: Irish Potato Famine: Price Higher, Consume More

3 Uncertainty

An Outline in Uncertainty

- Preference, Decision
- Expected Value / Variability, Risk Standard Deviation
- Expected Utility

To measure risk we must know:

- All of the possible outcomes.
- The probability that each outcome will occur, the sum of the probabilities that each outcome will occur $=1$.

Example. Probability of Weather

- Sunny 70\%.
- Rainy 5%.
- Cloudy 25%.

The sum of all the probabilities is 100%.
Objective probability. Based on observed frequency of past events.

Figure 2: Bandwagon Effect: Positive Network Externalities

Figure 3: Snob Effect: Negative Network Externalities

Subjective probability. Based on perception, theory and understanding of outcomes.

Measures to characterize payoffs and degree of risk.

> Example (Job).

Outcome 1
Outcome 2

	Outcome 1	Outcome 2
Job 1	$\$ 2000$ with probability 50%	$\$ 1000$ with probability 50%
Job 2	$\$ 1510$ with probability 99%	$\$ 510$ with probability 1%

Table 1: Compare Two Jobs, Each has Two Outcomes

Expected value.

$$
E(x)=p_{1} x_{1}+p_{2} x_{2}+\ldots+p_{n} x_{n}
$$

where x is a random variable, which has realizations $x_{1}, x_{2}, \ldots, x_{n}$ with probability $p_{1}, p_{2}, \ldots, p_{n}$ respectively. Discuss the example. Expected values of salary from job 1 and 2 are:

$$
\begin{gathered}
E(j o b 1)=0.50 \times 2000+0.50 \times 1000=1500 \\
E(j o b 2)=0.99 \times 1510+0.01 \times 510=1500
\end{gathered}
$$

Since

$$
E(j o b 1)=E(j o b 2),
$$

we do not know which job is better.

Standard deviation.

$$
\sigma(x)=\sqrt{p_{1}\left[x_{1}-E(x)\right]^{2}+p_{2}\left[x_{2}-E(x)\right]^{2}+\ldots+p_{n}\left[x_{n}-E(x)\right]^{2}} .
$$

We can consider the risks of those jobs from standard deviation:

$$
\begin{aligned}
& \sigma_{1}=\sqrt{0.50 \times(2000-1500)^{2}+0.50 \times(1000-1500)^{2}}=500 \\
& \sigma_{2}=\sqrt{0.99 \times(1510-1500)^{2}+0.01 \times(510-1500)^{2}}=99.5
\end{aligned}
$$

Since

$$
\sigma_{1}>\sigma_{2}
$$

for less risk, we will choose job 2.

Expected utility.

$$
E[u(x)]=p_{1} u\left(x_{1}\right)+p_{2} u\left(x_{2}\right)+\ldots+p_{n} u\left(x_{n}\right) .
$$

