14.12 Game Theory

Muhamet Yildiz

Fall 2012

Homework 2

1. Consider the following game.

	a	b	С	d
w	2,0	0,5	$1,\!0$	0,4
x	4,1	2,1	0,2	1,0
y	2,1	5,0	0,0	0,3
z	0,0	1,0	4,1	0,0

(a) Compute the set of rationalizable strategies.We find the rationalizable strategies by iterated strict dominance.

w is dominated by a mixed strategy putting 2/3 on x and 1/3 on z. a is dominated by a mixed strategy putting 3/5 on c and 2/5 on d. b is dominated by a mixed strategy putting 3/5 on c and 2/5 on d. y is dominated by a mixed strategy putting 1/2 on x and 1/2 on z. d is dominated by c. x is dominated by z. The set of rationalizable strategies is $\{z\} \times \{c\}$

- (b) Compute the set of all Nash equilibria.
 The only nash equilbrium is (z, c) because there is only 1 rationalizable strategy for each player
- 2. Consider the following game.
 - (a) Find all Nash equilibria in pure strategies.To find the nash equilibrium of the extensive form game, we must write it as a normal form game. The cells in bold are pure strategy nash equilibria.
 - (b) Find a Nash equilibrium in which Player 1 plays a mixed strategy (without putting probability 1 on any of his strategies).

To find a mixed strategy, we look at which strategies allow player 1 to make player 2 indifferent between any of his strategies. Since we found pure NE on A and B, we look for some mixing between those two. By putting probability 3/4 on A and 1/4 on B, we make player 2 indifferent between all of his strategies. Then he can mix with a total

	Tab			
	Ll	Lr	Rl	Rr
А	3,1	3,1	0,0	$0,\!0$
В	$0,\!0$	$0,\!0$	1,3	$1,\!3$
С	1.5	0.5	1	0

probability of 1/4 on Ll and Lr and 3/4 probability on some combination of Rl and Rr. This makes player 1 indifferent. In addition, we must check that C is not the best response to player 2's strategy. To do that, we need $1.5\sigma(Ll) + 0.5\sigma(Lr) + \sigma(Rl) < 0.75$. For this to be true, player 2 must put positive probability on Rr.

There is another set of mixed equilibria: Player 2 plays Rl and Player 1 mixes, putting probability $p \in [1/3, 1]$ on B and 1 - p on C.

3. Use backwards induction to compute a Nash equilibrium of the following game.

After L, player 2 plays B and player 1 plays A. Player 1's equilibrium utility from L is 3. After Rr, player 1 plays y, so after R player 2 will choose to play l. Player 1's equilibrium utility from R is 2, so player 1 will play L. The nash equilibrium from backwards induction is LAy, Bl.

4. (a) For p > q + c(1 - 2x), all kids go to firm 2. Thus, the revenue for firm 1 and 2 are zero and q, respectively. For p = q + c(1 - 2x), kids from $x_0 \le x$ are indifferent and kids from $x_0 > x$ prefer firm 2. The revenue for firm 1 and 2 are $\frac{1}{2}px$ and $\frac{1}{2}px + q(1 - x)$, respectively. Similarly, for q > p + c(1 - 2x), the revenue for firm 1 and 2 are p and zero. For q = p + c(1 - 2x), the revenue for firm 1 and 2 are $px + \frac{1}{2}p(1 - x)$ and $\frac{1}{2}q(1 - x)$. For |p - q| < c(1 - 2x), we have an interior solution: there is a "mid-point" x^* such that $x < x^* < 1 - x$ and kid at x^* is indifferent. In other words,

$$c |x^* - x| + p = c |x^* - (1 - x)| + q$$

Solving, we get

$$x^* = \frac{1}{2} + \frac{q - p}{2c}$$

Note that |p-q| < c(1-2x) implies $x < x^* < 1-x$. For |p-q| < c(1-2x), the revenue for firm 1 (located at x) is

$$x^*p = \left\{\frac{1}{2} + \frac{q-p}{2c}\right\} \cdot p$$

For firm 2 (located at 1 - x), the revenue is

$$(1 - x^*) q = \left\{\frac{1}{2} + \frac{p - q}{2c}\right\} \cdot q$$

(b) Strategy of firm 1 is to choose $p \in [0, \infty]$ and Strategy of firm 2 is to choose $q \in [0, \infty]$. Utility (payoff) of firm 1 is zero if p > q + c(1 - 2x), p if q > p + c(1 - 2x), $\frac{1}{2}px$ if $p = \frac{1}{2}px$ $\begin{array}{l} q+c\left(1-2x\right), px+\frac{1}{2}p(1-x) \text{ if } q=p+c\left(1-2x\right), \text{ and } \left\{\frac{1}{2}+\frac{q-p}{2c}\right\} \cdot p \text{ if } |p-q| < c\left(1-2x\right).\\ \text{Utility of firm 2 is 0 if } q>p+c(1-2x), q \text{ if } p>q+c(1-2x), \frac{1}{2}qx \text{ if } q=p+c(1-2x),\\ qx+\frac{1}{2}q(1-x) \text{ if } q=p-c(1-2x), \text{ and } \left\{\frac{1}{2}+\frac{p-q}{2c}\right\} \cdot q \text{ if } |p-q| < c\left(1-2x\right). \end{array}$

(c) If $q \ge p + c(1-2x)$, firm 2 would deviate to $q = p + c(1-2x) - \epsilon$, where $\epsilon > 0$ and ϵ is small, as

$$\left[\frac{1}{2} + \left\{\frac{p - (p + c(1 - 2x) - \epsilon)}{2c}\right\}\right] \left\{p + c(1 - 2x) - \epsilon\right\} - \frac{1}{2} \left\{p + c(1 - 2x)\right\} x > 0$$

similarly, if $p \ge q + c(1 - 2x)$, firm 1 would deviate to $p = q + c(1 - 2x) - \epsilon$, where $\epsilon > 0$ and ϵ is small. Thus, to search Nash equilibrium, we only need to consider the case |p - q| < c(1 - 2x). Best response functions are given by the first order conditions (FOC): $q^{BR}(p) = \frac{p+c}{2}$, $p^{BR}(q) = \frac{q+c}{2}$. Solving, we get p = q = c. This is the unique Nash equilibrium.

14.12 Economic Applications of Game Theory Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.