Homework \#4 Solutions

Problem 1

a. The lower bound is 1 . If n is even, let X be $((c, c), \ldots,(b, b) \ldots)$, where (c, c) is played for $n / 2$ periods and (b, b) is played for $n / 2$ periods. For n odd, $X=((c, c), \ldots,(b, b), \ldots,(a, a))$, where (c, c) is played for $(n-1) / 2$ periods, (b, b) is played for $(n-1) / 2$ periods. The nash equilibrium strategy is to play X as long as X has been played in every previous period, and otherwise play (c, c) for the rest of the game. This is a nash equilibrium because there is no possible deviation for either player. If a player deviates, he will get payoff at most 1 in every future period, so the best he can get by deviating is payoff n, which he is indifferent to.
b. For n even, $X_{n}=((c, c), \ldots,(b, b), \ldots,(a, a))$, where (c, c) is played for $n / 2$ periods, (b, b) is played for $n / 2-1$ periods. If n is odd, let X be $((c, c), \ldots,(b, b) \ldots)$, where (c, c) is played for $(n-1) / 2$ periods and (b, b) is played for $(n+1) / 2$ periods. For $n=1$, the strategy is to play (b, b), for payoff 2 . We prove by induction.

Suppose that for $n<T$, there is a subgame perfect equilibrium with payoff $n+1$. At $n=T$, the subgame perfect equilibrium is to play X_{T} as long as everyone has played on the equilibrium path. If a player deviates from playing (c, c) at some period with t rounds remaining, we play X_{t} as punishment. If a player deviates from playing (b, b) or (a, a), we continue on X_{T}.

A player that deviates with t rounds remaining gets payoff 1 in that round, and then plays the X_{t} subgame perfect equilibrium with payoff $t+1$, for a total of $t+2$. This will never exceed $T+1$, so on histories on the equilbrium path there are no profitable deviations. There are no deviations after histories when we are on X_{t} because they are subgame perfect equilbria, by the inductive hypothesis.

Problem 2
a. This is never SPE. Player 2 has payoff 0 in equilibrium, so he can always deivate to R for payoff 1 .
b. This is also never SPE, for the same reason.
c. This is always a SPE. In every period, players are playing a stage game nash equilibrium, so the strategy is subgame perfect equilibrium.

Problem 3
(a) Suppose for each cycle, (C,C) is played a times and (D,D) is played b times. Then average payoff for the cycle is $\frac{5 a+b}{a+b}$. To make $1.1<\frac{5 a+b}{a+b}<1.2$, we need $19 a<b<39 a$. Let's choose $a=1, b=20$. The strategy profile is for each player, play D for $t=21 k+i$, for $i=1,2, \ldots, 20$ and play C for $t=21 k$ if no deviation has occurred. If any deviation has occured, play D forever.

No player has incentive to deviate when some player has deviated since (D,D) is NE of the stage game. When a player is supposed to play D at $t=21 k+i$, to prevent deviation we need

$$
6+1 \cdot \frac{\delta}{1-\delta} \leq 1 \cdot \frac{1}{1-\delta}+4 \delta^{21-i} \frac{1}{1-\delta^{21}}
$$

note that the right side of inequality is minimized at $i=1$, so we only need to check that case. For $\delta=0.999$, it holds.

When a player is supposed to play C, to prevent deviation we need

$$
6+1 \cdot \frac{\delta}{1-\delta} \leq 1 \cdot \frac{1}{1-\delta}+4 \cdot \frac{1}{1-\delta^{21}}
$$

For $\delta=0.999$, it holds.
(b) The strategy profile is that player 1 plays D for $t=4 k+i$, for $i=0,1,2$ and plays C for $t=4 k+3$ and player 2 plays C for all t if no deviation has occurred. If any deviation has occured, play D forever. When (D, C) is supposed to be played, player 1 has no incentive to deviate as he gets the maximum possible payoff. For player 2 , we only need to check $t=4 k$ case (similar logic from part a) as if she were to deviate she would have maximum incentive at that case. To prevent deviation we need

$$
1 \cdot \frac{1}{1-\delta} \leq \delta^{3} \cdot 5 \cdot \frac{1}{1-\delta^{3}}
$$

for $\delta=0.999$, it holds. When (C,C) is supposed to be played, for player 1 we need $6+1 \cdot \frac{\delta}{1-\delta} \leq 6 \cdot \frac{1}{1-\delta}-\frac{1}{1-\delta^{3}}$ and for player 2 we need $6+1 \cdot \frac{\delta}{1-\delta} \leq 5 \cdot \frac{1}{1-\delta^{3}}$. Both holds for $\delta=0.999$.
(c) The answer is no. To give player 1 the average payoff of more than 5.8, we have to give player to the average payoff of less than 1 . Since player 2 can get at least 1 by deviation and can get at least 1 in all static NE, we cannot construct SPE where player 2 gets less than 1 on average.

No player has incentive to deviate when some player has deviated since (D,D) is NE of the stage game.

Problem 4
(a) If $\left|p_{1}-p_{2}\right|<c$, we have an interior solution: there is a "mid-point" x^{*} such that $0<x^{*}<1$ and kid at x^{*} is indifferent. In other words,

$$
c x^{*}+p_{1}=c\left(1-x^{*}\right)+p_{2}
$$

so $x^{*}=\frac{1}{2}+\frac{p_{2}-p_{1}}{2 c}$. If $\left|p_{1}-p_{2}\right| \geq c$, then all kids go to one firm.
To start, we find one stage (static) NE. If $\left|p_{1}-p_{2}\right| \geq c$, it cannot be an equilibrium as higher price firm makes zero and has incentive to cut its price so that it can make positive profit. For $\left|p_{1}-p_{2}\right|<c$, firm 1 solves

$$
\max _{p_{1}} p_{1}\left\{\frac{1}{2}+\frac{p_{2}-p_{1}}{2 c}\right\}
$$

Taking FOC, you get $p_{1}^{B R}\left(p_{2}\right)=\frac{c+p_{2}}{2}$. Similirly, $p_{2}^{B R}\left(p_{1}\right)=\frac{c+p_{1}}{2}$. Thus, $p_{1}=p_{2}=c$ as NE.

Since this NE is a unique SPE for the stage game, playing this NE for all period is a unique SPE for finite games.
(b-1) Check what would be the best response if the other firm plays p^{*}. If $p^{*}-c \geq \frac{p^{*}+c}{2}$ (or $p^{*} \geq 3 c$), then BR is to charge $p^{*}-c$ and capture the whole market. In this case, to make sure that there is no incentive to deviate, we need

$$
\frac{p^{*}}{2}\left(1+\delta+\delta^{2}+\cdots\right) \geq\left(p^{*}-c\right)+\frac{c}{2}\left(\delta+\delta^{2}+\cdots\right)
$$

$$
\begin{aligned}
\frac{p^{*}}{2} & \geq\left(p^{*}-c\right)(1-\delta)+\frac{c \delta}{2} \\
(2 \delta-1) p^{*} & \geq(3 \delta-2) c
\end{aligned}
$$

Note that $\hat{p}=c$ here.
If $\delta>\frac{1}{2}$, then $p^{*} \geq \frac{3 \delta-2}{2 \delta-1} c$. Thus, maximum p^{*} is \bar{p}.
If $\delta=\frac{1}{2}$, then $0 \geq-2 c$ works for all p^{*}, so maximum p^{*} is \bar{p}.
If $\delta<\frac{1}{2}$, then $p^{*} \leq \frac{2-3 \delta}{1-2 \delta} c=p_{\text {max }}$.
If $\delta \geq \frac{1}{3}, p_{\max } \geq 3 c$ so maximum p^{*} is \bar{p}.
If $\delta<\frac{1}{3}, p_{\max }<3 c$ so the best responce is $\frac{p^{*}+c}{2}$. In this case, to make sure that there is no incentive to deviate, we need

$$
\begin{aligned}
\frac{p^{*}}{2} 1+\delta+\delta^{2}+\cdots & \geq \frac{\left(p^{*}+c\right)^{2}}{8 c}+\frac{c}{2} \delta+\delta^{2}+\cdots \\
\frac{p^{*}}{2} & \geq \frac{\left(p^{*}+c\right)^{2}}{8 c}(1-\delta)+\frac{c \delta}{2}
\end{aligned}
$$

Solving, we get

$$
p^{*} \leq \frac{1+3 \delta}{1-\delta} c
$$

(b-2) Suppose the firm makes u_{0} by deviating during the war period. Note that u_{0} is zero if $\hat{p} \leq 0$ and positive if $\hat{p}>0$.

Let V_{0} as a sum of current and future profit at the war period. Then $V_{0}=$ $\frac{\hat{p}}{2}+\frac{p^{*}}{2} \frac{\delta}{1-\delta}$ and to prevent deviation during the war state, we need

$$
\frac{1}{1-\delta} V_{0} \geq u_{0}+\frac{\delta}{1-\delta} V_{0}
$$

or $V_{0} \geq u_{0}$. Since $u_{0} \geq 0$, the best punishment is to choose $V_{0}=u_{0}=0$. This could be done by choosing $\hat{p}=-\frac{\delta}{1-\delta} p^{*}$.

For collusion period, to prevent deviation we need

$$
\begin{aligned}
\frac{p^{*}}{2} & \geq(1-\delta)\left(p^{*}-c\right)+\delta \cdot 0 \\
\left(\frac{1}{2}-\delta\right) p^{*} & \leq(1-\delta) c
\end{aligned}
$$

Thus, if $\delta \geq \frac{1}{2}$, then $p^{*}=\bar{p}$. If $\delta<\frac{1}{2}$, then $p^{*}=\min \left\{\bar{p}, \frac{(1-\delta) c}{\frac{1}{2}-\delta}\right\}$.

MIT OpenCourseWare
http://ocw.mit.edu

14.12 Economic Applications of Game Theory Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

