Lecture 13 Infinitely Repeated Games

14.12 Game Theory
Muhamet Yildiz

Road Map

1. Definitions
2. Single-deviation principle
3. Examples

Infinitely repeated Games with observable actions

- $T=\{0,1,2, \ldots, t, \ldots\}$
- $G=$ "stage game" = a finite game
- At each t in T, G is played, and players remember which actions taken before t;
- Payoffs = Discounted sum of payoffs in the stage game.
- Call this game $G(T)$.

\[

\]

```
C=> 5+5dVd
C=> 6+dVD
C <=> d>1/5.
```


Definitions

The Present Value of a given payoff stream $\pi=$ $\left(\pi_{0}, \pi_{1}, \ldots, \pi_{t}, \ldots\right)$ is

$$
\mathrm{PV}(\pi ; \delta)=\pi_{0}+\delta \pi_{1}+\ldots+\delta^{\mathrm{t}} \pi_{\mathrm{t}}+\ldots
$$

The Average Value of a given payoff stream π is

$$
(1-\delta) \operatorname{PV}(\pi ; \delta)=(1-\delta)\left(\pi_{0}+\delta \pi_{1}+\ldots+\delta^{t} \pi_{\mathrm{t}}+\ldots\right)
$$

The Present Value of a given payoff stream π at t is

$$
\mathrm{PV}_{\mathrm{t}}(\pi ; \delta)=\pi_{\mathrm{t}}+\delta \pi_{\mathrm{t}+1}+\ldots+\delta^{\mathrm{s}} \pi_{\mathrm{t}+\mathrm{s}}+\ldots
$$

A history is a sequence of past observed plays
e.g. (C,D), (C,C), (D,D), (D,D) (C,C)

Recall: Single-Deviation Principle

- $s=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ is a SPE
- \Leftrightarrow it passes the following test
- for each information set, where a player i moves,
- fix the other players' strategies as in s,
- fix the moves of i at other information sets as in s;
- then i cannot improve her conditional payoff at the information set by deviating from s_{i} at the information set only.

Single-Deviation Principle: Reduced Game

- $s=\left(s_{1}, \mathrm{~s}_{2}, \ldots, s_{n}\right)$, date t, and history h fixed
- Reduced Game: For each terminal node a of the stage game at t,
- assume that s is played from $t+1$ on given (h, a)
- write $\operatorname{PV}(h, a, s, t+1)$ for present value at $t+1$
- Define utility of each player i at the terminal node a as

$$
u_{i}(a)+\delta \mathrm{PV}(h, a, s, t+1)
$$

- Single-Deviation Principle: s is SPE \Leftrightarrow for every h and t, s gives a SPE in the reduced game

Reduced Game for (Grim,Grim)

With previous defection:
C
C
D

C	$5+\delta /(1-\delta)$ $5+\delta /(1-\delta)$	$0+\delta /(1-\delta)$
D	$6+\delta /(1-\delta)$	
$6+\delta /(1-\delta)$	$1+\delta /(1-\delta)$	
$0+\delta /(1-\delta)$	$1+\delta /(1-\delta)$	

Without previous defection:

C $\quad 5+5 \delta /(1-\delta) \quad 0+\delta /(1-\delta)$

D

$5+5 \delta /(1-\delta)$	$0+\delta /(1-\delta)$
$5+5 \delta /(1-\delta)$	$6+\delta /(1-\delta)$
$6+\delta /(1-\delta)$	$1+\delta /(1-\delta)$
$0+\delta /(1-\delta)$	$1+\delta /(1-\delta)$

```
C=> 5+5dVd
C=> 6+dVD
C <=> d>1/5.
```


Is (Tit-for-tat,Tit-for-tat) a SPE?

- Tit-for-Tat: Start with C; thereafter, play what the other player played in the previous round.
- No!
- Consider (C,C) at $t-1$ and Player 1.
- C $=>5 /(1-\delta)$
- $\mathrm{D}=>6 /\left(1-\delta^{2}\right)$
- No Deviation $\Leftrightarrow \delta \geq 1 / 5$.
- Consider (C,D) at t - and Player 1.
- C => 5/(1-ס)
$-\mathrm{D}=>6 /\left(1-\delta^{2}\right)$
- No Deviation $\Leftrightarrow \delta \leq 1 / 5$.
- Not SPE if $\delta \neq 1 / 5$.

Modified Tit-for-Tat

Start with C; if any player plays D when the previous play is (C,C), play D in the next period, then switch back to C.

Infinite-period entry deterrence

Strategy of Entrant: Enter iff
Accomodated before.
Strategy of Incumbent:
Accommodate iff
accomodated before.

Reduced Games

Accommodated before:

Not Accommodated before:

MIT OpenCourseWare
http://ocw.mit.edu
14.12 Economic Applications of Game Theory

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

