14.12 Game Theory

Lecture 2: Decision Theory Muhamet Yildiz

Road Map

- 1. Basic Concepts (Alternatives, preferences,...)
- 2. Ordinal representation of preferences
- 3. Cardinal representation Expected utility theory
- 4. Modeling preferences in games
- 5. Applications: Risk sharing and Insurance

Basic Concepts: Alternatives

- Agent chooses between the alternatives
- X = The set of all alternatives
- Alternatives are
 - Mutually exclusive, and
 - -Exhaustive

Example

- Options = {Algebra, Biology}
- *X* = {
- a = Algebra,
- b = Biology,
- ab = Algebra and Biology,
- n = none

Preference Relation

Definition: A relation is a preference relation iff it is complete and transitive.

Examples

Define a relation among the students in this class by

- x T y iff x is at least as tall as y;
- x M y iff x's final grade in 14.04 is at least as high as y's final grade;
- x H y iff x and y went to the same high school;
- x Y y iff x is strictly younger than y;
- x S y iff x is as old as y;

More relations

• Strict preference:

 $x \succ y \Leftrightarrow [x \ge y \text{ and } y \not\ge x],$

- Indifference:
 - $x \sim y \Leftrightarrow [x \ge y \text{ and } y \ge x].$

Examples

Define a relation among the students in this class by

- x T y iff x is at least as tall as y;
- x Y y iff x is strictly younger than y;
- x S y iff x is as old as y;

Ordinal representation

Definition: \geq represented by $u : X \rightarrow R$ iff $x \geq y \Leftrightarrow u(x) \geq u(y) \quad \forall x, y \in X.$ (OR)

Example

```
≽**=
    {(a,b),(a,ab),(a,n),(b,ab),(b,n),(n,ab),(a,a),(b,
    b),(ab,ab),(n,n)}
is represented by u** where
u**(a) =
u**(b) =
u**(ab) =
u**(ab) =
u**(n) =
```


Theorem – Ordinal Representation

Let X be finite (or countable). A relation \geq can be represented by a utility function U in the sense of (OR) iff \geq is a preference relation.

If $U: X \to \mathbb{R}$ represents \geq , and if $f: \mathbb{R} \to \mathbb{R}$ is strictly increasing, then $f \circ U$ also represents \geq .

Definition: \geq represented by $u : X \rightarrow R$ iff $x \geq y \Leftrightarrow u(x) \geq u(y) \quad \forall x, y \in X.$ (OR)

VNM Axioms

Axiom A1: \geq is complete and transitive.

VNM Axioms

Axiom A3 (*Continuity*): For any $p,q,r \in P$ with p > q, there exist $a,b \in (0,1)$ such that ap + (1-a)r > q & p > bq + (1-b) r.

Theorem – VNM-representation

A relation \geq on *P* can be represented by a VNM utility function $u : Z \rightarrow R$ iff \geq satisfies Axioms A1-A3.

```
u and v represent \geq iff v = au + b for some a > 0 and any b.
```

Exercise

Consider a relation ≥ among positive real numbers represented by VNM utility function u with u(x) = x².
 Can this relation be represented by VNM

utility function $u^*(x) = x^{1/2}$?

What about $u^{**}(x) = 1/x$?

- An agent is risk-neutral iff his utility function is linear, i.e., u(x) = ax + b.
- An agent is risk-averse iff his utility function is concave.
- An agent is risk-seeking iff his utility function is convex.

14.12 Economic Applications of Game Theory Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.