14.12 Game Theory

Lecture 2: Decision Theory
Muhamet Yildiz

Road Map

1. Basic Concepts (Alternatives, preferences,...)
2. Ordinal representation of preferences
3. Cardinal representation - Expected utility theory
4. Modeling preferences in games
5. Applications: Risk sharing and Insurance

Basic Concepts: Alternatives

- Agent chooses between the alternatives
- $X=$ The set of all alternatives
- Alternatives are
- Mutually exclusive, and
- Exhaustive

Example

- Options $=$ \{Algebra, Biology $\}$
- $X=\{$
- a = Algebra,
- b = Biology,
- $a b=$ Algebra and Biology,
- $\mathrm{n}=$ none $\}$

Basic Concepts: Preferences

- A relation $\succcurlyeq($ on $X)$ is any subset of $X \times X$.
- e.g.,

$$
\succcurlyeq^{*}=\{(\mathrm{a}, \mathrm{~b}),(\mathrm{a}, \mathrm{ab}),(\mathrm{a}, \mathrm{n}),(\mathrm{b}, \mathrm{ab}),(\mathrm{b}, \mathrm{n}),(\mathrm{n}, \mathrm{ab})\}
$$

- $\mathrm{a} \succcurlyeq \mathrm{b} \equiv(\mathrm{a}, \mathrm{b}) \in \succcurlyeq$.
- \succcurlyeq is complete iff $\forall x, y \in X$, $x \succcurlyeq y$ or $y \succcurlyeq x$.
- \succcurlyeq is transitive iff $\forall \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$,

$$
[x \succcurlyeq y \text { and } y \succcurlyeq z] \Rightarrow x \succcurlyeq z \text {. }
$$

Preference Relation

Definition: A relation is a preference relation iff it is complete and transitive.

Examples

Define a relation among the students in this class by

- x T y iff x is at least as tall as y;
- x M y iff x's final grade in 14.04 is at least as high as y's final grade;
- $\mathrm{x} H \mathrm{y}$ iff x and y went to the same high school;
- x Y y iff x is strictly younger than y;
- x S y iff x is as old as y;

More relations

- Strict preference:

$$
x>y \Leftrightarrow[x \geqslant y \text { and } y \not x],
$$

- Indifference:

$$
x \sim y \Leftrightarrow[x \geqslant y \text { and } y \geqslant x] .
$$

Examples

Define a relation among the students in this class by

- x T y iff x is at least as tall as y;
- x Y y iff x is strictly younger than y;
- x S y iff x is as old as y;

Ordinal representation

Definition: \succcurlyeq represented by u : $\mathrm{X} \rightarrow \mathrm{R}$ iff

$$
x \geqslant y \Leftrightarrow u(x) \geq u(y) \quad \forall x, y \in X . \quad \text { (OR) }
$$

Example

$\gtrless{ }^{* *}=$
$\{(a, b),(a, a b),(a, n),(b, a b),(b, n),(n, a b),(a, a),(b$,
b),(ab,ab),(n,n)\}
is represented by $u^{* *}$ where
$u^{* *}(a)=$
$\mathrm{u}^{* *}(\mathrm{~b})=$
$\mathrm{u}^{* *}(\mathrm{ab})=$
$\mathrm{u}^{* *}(\mathrm{n})=$

Exercises

- Imagine a group of students sitting around a round table. Define a relation R, by writing $x R y$ iff x sits to the right of y. Can you represent R by a utility function?
- Consider a relation \succcurlyeq among positive real numbers represented by u with $u(x)=x^{2}$.
Can this relation be represented by $u^{*}(x)=x^{1 / 2}$?
What about $u^{* *}(x)=1 / x$?

Theorem - Ordinal Representation

Let X be finite (or countable). A relation \succcurlyeq can be represented by a utility function U in the sense of (OR) iff \succcurlyeq is a preference relation.
If $U: X \rightarrow \mathrm{R}$ represents \succcurlyeq, and if $f: \mathrm{R} \rightarrow \mathrm{R}$ is strictly increasing, then $f \circ U$ also represents \succcurlyeq.

Definition: \succcurlyeq represented by $u: X \rightarrow \mathrm{R}$ iff $\mathrm{x} \geqslant \mathrm{y} \Leftrightarrow \mathrm{u}(\mathrm{x}) \geq \mathrm{u}(\mathrm{y}) \quad \forall \mathrm{x}, \mathrm{y} \in X$. (OR)

Cardinal representation - definitions

- $Z=$ a finite set of consequences or prizes.
- A lottery is a probability distribution on Z.
- $P=$ the set of all lotteries.
- A lottery:

Cardinal representation

- Von Neumann-Morgenstern representation:

$$
\begin{gathered}
\begin{array}{c}
\text { A lottery } \\
\text { (in } \mathrm{P})
\end{array}
\end{gathered} \underbrace{}_{\mathrm{U}(p)} \geq \underbrace{\sum_{z \in Z} u(z) p(z)}_{\mathrm{U}(q)} \geq \underbrace{\sum_{z \in \mathcal{L}} u(z) q(z)}_{z \in Z}
$$

VNM Axioms

Axiom A1: \succcurlyeq is complete and transitive.

VNM Axioms

Axiom A2 (Independence): For any $\mathrm{p}, \mathrm{q}, \mathrm{r} \in \mathrm{P}$,

 and any $a \in(0,1]$,$$
a \mathrm{p}+(1-a) \mathrm{r}>a \mathrm{q}+(1-a) \mathrm{r} \Leftrightarrow \mathrm{p}>\mathrm{q}
$$

VNM Axioms

Axiom A3 (Continuity): For any $\mathrm{p}, \mathrm{q}, \mathrm{r} \in \mathrm{P}$ with $\mathrm{p}>\mathrm{q}$, there exist $a, b \in(0,1)$ such that

$$
a \mathrm{p}+(1-a) \mathrm{r}>\mathrm{q} \& \mathrm{p}>b \mathrm{q}+(1-b) \mathrm{r} .
$$

Theorem - VNM-representation

A relation \succcurlyeq on P can be represented by a VNM utility function $u: Z \rightarrow \mathrm{R}$ iff \succcurlyeq satisfies Axioms A1-A3.
u and v represent \succcurlyeq iff $v=a u+b$ for some $a>0$ and any b.

Exercise

- Consider a relation \succcurlyeq among positive real numbers represented by VNM utility function u with $u(x)=x^{2}$.
Can this relation be represented by VNM utility function $u^{*}(x)=x^{1 / 2}$?
What about $u^{* *}(x)=1 / x$?

Example

- $\mathrm{T} \succcurlyeq \mathrm{B} \Leftrightarrow p \geq 1 / 4 ; \mathrm{BL} \sim \mathrm{BR}$
- $u_{\mathrm{A}}(\mathrm{B}, \mathrm{L})=u_{\mathrm{A}}(\mathrm{B}, \mathrm{R})=0$
- $p u_{\mathrm{A}}(\mathrm{T}, \mathrm{L})+(1-p) u_{\mathrm{A}}(\mathrm{T}, \mathrm{R}) \geq 0 \Leftrightarrow p \geq 1 / 4$;
- ($1 / 4) u_{\mathrm{A}}(\mathrm{T}, \mathrm{L})+(3 / 4) u_{\mathrm{A}}(\mathrm{T}, \mathrm{R})=0$
- Utility of A:

Attitudes towards Risk

- A fair gamble: $\underset{1-p}{\stackrel{p}{\longrightarrow}} \mathrm{x} \quad p x+(1-p) y=0$.
- An agent is risk neutral iff he is indifferent towards all fair gambles.
- He is (strictly) risk averse iff he never wants to take any fair gamble.
- He is (strictly) risk seeking iff
he always wants to take fair gambles.
- An agent is risk-neutral iff his utility function is linear, i.e., $u(x)=a x+b$.
- An agent is risk-averse iff his utility function is concave.
- An agent is risk-seeking iff his utility function is convex.

Risk Sharing

- Two agents, each having a utility function u with $u(x)=\sqrt{x}$ and an "asset:"

- For each agent, the value of the asset is 5.
- Assume that the outcomes of assets are independently distributed.
- If they form a mutual fund so that each agent owns half of each asset, each gets

-The Value of the mutual fund for an agent is $(1 / 4)(100)^{1 / 2}+(1 / 2)(50)^{1 / 2}+(1 / 4)(0)^{1 / 2}$
$\approx 10 / 4+7 / 2=6$

Insurance

- We have an agent with $u(x)=x^{1 / 2}$ and

- And a risk-neutral insurance company with lots of money, selling full insurance for "premium" P.

Insurance - continued

- The agent is willing to pay premium P_{A} where

$$
\begin{gathered}
\left(1 \mathrm{M}-P_{A}\right)^{1 / 2} \geq(1 / 2)(1 \mathrm{M})^{1 / 2}+(1 / 2)(0)^{1 / 2} \\
=500
\end{gathered}
$$

i.e.,

$$
P_{A} \leq \$ 1 \mathrm{M}-\$ 250 \mathrm{~K}=\$ 750 \mathrm{~K} .
$$

- The company is willing to accept premium

$$
P_{I} \geq(1 / 2)(1 \mathrm{M})=\$ 500 \mathrm{~K} .
$$

MIT OpenCourseWare
http://ocw.mit.edu
14.12 Economic Applications of Game Theory

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

