Lecture 5 Rationalizability

14.12 Game Theory
Muhamet Yildiz

Recap: Rationality \& Dominance

- Belief: A probability distribution p_{-i} on others' strategies;
- Mixed Strategy: A probability distribution σ_{i} on own strategies;
- Playing s_{i}^{*} is rational $\Leftrightarrow s_{i}^{*}$ is a best response to a belief $p_{-i}: \forall s_{i}$

$$
\sum_{s_{-i}} u_{i}\left(s_{i}^{*}, s_{-i}\right) p_{-i}\left(s_{-i}\right) \geq \sum_{s_{-i}} u_{i}\left(s_{i}, s_{-i}\right) p_{-i}\left(s_{-i}\right)
$$

- σ_{i} dominates $s_{i}^{* *} \Leftrightarrow \forall s_{-i}$

$$
\sum_{s_{i}} u_{i}\left(s_{i}, s_{-i}\right) \sigma_{i}\left(s_{i}\right)>u_{i}\left(s_{i}^{* *}, s_{-i}\right)
$$

- Theorem: Playing $s_{i}{ }^{*}$ is rational $\Leftrightarrow s_{i}^{*}$ is not dominated.

Rationalizability

The play is rationalizable, provided that ...

Important

- Eliminate only the strictly dominated strategies
- Ignore weak dominance
- Make sure to eliminate the strategies dominated by mixed strategies as well as pure

Beauty Contest

- There are n students.
- Simultaneously, each student submits a number x_{i} between 0 and 100 .
- The payoff of student i is $100-\left(x_{i}-2 \bar{x} / 3\right)^{2}$ where

$$
\bar{x}=\frac{x_{1}+x_{2}+\cdots+x_{n}}{n} .
$$

Rationalizability in Beauty Contest

If $X_{-i}=$ Expected value of sum of x_{j} with $j \neq i$, best strategy is

$$
(2 / 3) X_{-i} /(\mathrm{n}-2 / 3)
$$

After Round 1:

$$
\left[0, \frac{2}{3} \frac{n-1}{n-2 / 3} 100\right]
$$

After Round 2:

$$
\left[0,\left(\frac{2}{3} \frac{n-1}{n-2 / 3}\right)^{2} 100\right]
$$

After Round k :

$$
\left[0,\left(\frac{2}{3} \frac{n-1}{n-2 / 3}\right)^{k} 100\right]
$$

Rationalizability $=\{0\}$.

with m mischievous students

Payoff for mischievous: $\left(x_{i}-2 x / 3\right)^{2}$
Round 1: only 0 and 100 survive for \bar{m} ischievous; same as before for normal
Rounds 2 to $k(m, n)$-1: no elimination for mischievous; same as before for normal
Round $k(m, n)$: eliminate 0 for mischievous; same as before for normal
Round $k>k(m, n)$:

- Strategies for normal after round $k=\left[L_{k}, H_{k}\right]$
$L_{k}=\frac{2}{3} \frac{100 m+(n-m-1) L_{k-1}}{n-2 / 3} \quad H_{k}=\frac{2}{3} \frac{100 m+(n-m-1) H_{k-1}}{n-2 / 3}$
Ratinalizability = mischievous 100, normal 200m/(n+2m)

A summary

- If players are rational and cautious, they play the dominant-strategy equilibrium whenever it exists
- But, typically, it does not exist
- If rationality is common knowledge, a rationalizable strategy is played
- Typically, there are too many rationalizable strategies
- Nash Equilibrium: the players correctly guess the other players' strategies (or conjectures).

MIT OpenCourseWare
http://ocw.mit.edu
14.12 Economic Applications of Game Theory

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

