Lecture 7 Imperfect Competition

14.12 Game Theory
Muhamet Yildiz

Road Map

1. Cournot (quantity) competition
2. Rationalizability
3. Nash Equilibrium
4. Bertrand (price) competition
5. Nash Equilibrium
6. Rationalizability with discrete prices
7. Search Costs

Cournot Oligopoly

- $\mathrm{N}=\{1,2, \ldots, \mathrm{n}\}$ firms;
- Simultaneously, each firm i produces q_{i} units of a good at marginal cost c,
- and sells the good at price

$$
P=\max \{0,1-Q\}
$$

where $\mathrm{Q}=\mathrm{q}_{1}+\ldots+\mathrm{q}_{\mathrm{n}}$.

- Game $=\left(\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{n}} ; \pi_{1}, \ldots, \pi_{\mathrm{n}}\right)$ where $\mathrm{S}_{\mathrm{i}}=[0, \infty)$,

$$
\begin{gathered}
\pi_{\mathrm{i}}\left(\mathrm{q}_{1}, \ldots, \mathrm{q}_{\mathrm{n}}\right)=\mathrm{q}_{\mathrm{i}}\left[1-\left(\mathrm{q}_{1}+\ldots+\mathrm{q}_{\mathrm{n}}\right)-\mathrm{c}\right] \text { if } \mathrm{q}_{1}+\ldots+\mathrm{qn}<1, \\
-\mathrm{q}_{\mathrm{i}} \mathrm{c} \\
\text { otherwise. }
\end{gathered}
$$

Cournot Duopoly -- profit

Rationalizability in Cournot duopoly

- If i knows that $\mathrm{q}_{\mathrm{j}} \leq \mathrm{q}$, then $\mathrm{q}_{\mathrm{i}} \geq(1-\mathrm{c}-\mathrm{q}) / 2$.
- If i knows that $\mathrm{q}_{\mathrm{j}} \geq \mathrm{q}$, then $\mathrm{q}_{\mathrm{i}} \leq(1-\mathrm{c}-\mathrm{q}) / 2$.
- We know that $\mathrm{q}_{\mathrm{j}} \geq \mathrm{q}^{0}=0$.
- Then, $\mathrm{q}_{\mathrm{i}} \leq \mathrm{q}^{1}=\left(1-\mathrm{c}-\mathrm{q}^{0}\right) / 2=(1-\mathrm{c}) / 2$ for each i ;
- Then, $\mathrm{q}_{\mathrm{i}} \geq \mathrm{q}^{2}=\left(1-\mathrm{c}-\mathrm{q}^{1}\right) / 2=(1-\mathrm{c})(1-1 / 2) / 2$ for each i ;
- ...
- Then, $\mathrm{q}^{\mathrm{n}} \leq \mathrm{q}_{\mathrm{i}} \leq \mathrm{q}^{\mathrm{n+1}}$ or $\mathrm{q}^{\mathrm{n}+1} \leq \mathrm{q}_{\mathrm{i}} \leq \mathrm{q}^{\mathrm{n}}$ where

$$
\mathrm{q}^{\mathrm{n}+1}=\left(1-\mathrm{c}-\mathrm{q}^{\mathrm{n}}\right) / 2=(1-\mathrm{c})\left(1-1 / 2+1 / 4-\ldots+(-1 / 2)^{\mathrm{n}}\right) / 2 .
$$

- As $\mathrm{n} \rightarrow \infty, \mathrm{q}^{\mathrm{n}} \rightarrow(1-\mathrm{c}) / 3$.

Rationalizability in Cournot oligopoly

1. $\mathrm{n}=3 \quad$ is not very helpful!!!
2. Everybody is rational
3. $\Rightarrow q_{i} \leq(1-c) / 2$;
4. Everybody is rational and knows 2
5. $=>q_{i} \geq 0$
6. Everybody is rational and knows 4
7. $=>q_{i} \leq(1-\mathrm{c}) / 2$;
8. Everybody is rational and knows 6
9. $\Rightarrow q_{i} \geq 0$

Cournot Oligopoly --Equilibrium

- $\mathrm{q}>1-\mathrm{c}$ is strictly dominated, so $\mathrm{q} \leq 1-\mathrm{c}$.
- $\pi_{i}\left(\mathrm{q}_{1}, \ldots, \mathrm{q}_{n}\right)=\mathrm{q}_{\mathrm{i}}\left[1-\left(\mathrm{q}_{1}+\ldots+\mathrm{q}_{n}\right)-\mathrm{c}\right]$ for each i .
- FOC: $\left.\frac{\partial \pi_{i}\left(q_{1}, \ldots, q_{n}\right)}{\partial q_{i}}\right|_{q=q^{*}}=\left.\frac{\partial\left[q_{i}\left(1-q_{1}-\cdots-q_{n}-c\right)\right]}{\partial q_{i}}\right|_{q=q^{*}}$

$$
=\left(1-q_{1}^{*}-\cdots-q_{n}^{*}-c\right)-q_{i}^{*}=0 .
$$

- That is,

$$
\begin{aligned}
& 2 q_{1}^{*}+q_{2}^{*}+\cdots+q_{n}^{*}=1-c \\
& q_{1}^{*}+2 q_{2}^{*}+\cdots+q_{n}^{*}=1-c \\
& \vdots \\
& q_{1}^{*}+q_{2}^{*}+\cdots+2 q_{n}^{*}=1-c
\end{aligned}
$$

- Therefore, $\mathrm{q}_{1}{ }^{*}=\ldots=\mathrm{q}_{\mathrm{n}}{ }^{*}=(1-\mathrm{c}) /(\mathrm{n}+1)$.

Bertrand (price) competition

- $\mathrm{N}=\{1,2\}$ firms.
- Simultaneously, each firm i sets a price p_{i};
- If $p_{i}<p_{j}$, firm i sells $Q=\max \left\{1-p_{i}, 0\right\}$ unit at price p_{i}; the other firm gets 0 .
- If $\mathrm{p}_{1}=\mathrm{p}_{2}$, each firm sells $\mathrm{Q} / 2$ units at price p_{1}, where $\mathrm{Q}=\max \left\{1-\mathrm{p}_{1}, 0\right\}$.
- The marginal cost is 0 .
$\pi_{1}\left(p_{1}, p_{2}\right)=\left\{\begin{array}{cl}p_{1}\left(1-p_{1}\right) & \text { if } p_{1}<p_{2} \\ p_{1}\left(1-p_{1}\right) / 2 & \text { if } p_{1}=p_{2} \\ 0 & \text { otherwise }\end{array}\right.$

Bertrand duopoly -- Equilibrium

Theorem: The only Nash equilibrium in the "Bertrand game" is $\mathrm{p} *=(0,0)$.

Proof:

1. $\mathrm{p}^{*}=(0,0)$ is an equilibrium.
2. If $\mathrm{p}=\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right)$ is an equilibrium, then $\mathrm{p}=\mathrm{p}^{*}$.
3. If $\mathrm{p}=\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right)$ is an equilibrium, then $\mathrm{p}_{1}=\mathrm{p}_{2}$..

- $p_{i}>p_{j}=0 \Rightarrow p_{j}^{\prime}=\varepsilon ; p_{i}>p_{j}>0 \Rightarrow p_{i}^{\prime}=p_{j}$

2. If $\mathrm{p}_{1}=\mathrm{p}_{2}$ in equilibrium, then $\mathrm{p}=\mathrm{p}^{*}$.

- $\mathrm{p}_{1}=\mathrm{p}_{2}>0 \Rightarrow \mathrm{p}_{\mathrm{j}}{ }^{\prime}=\mathrm{p}_{\mathrm{j}}-\varepsilon$

Bertrand competition with discrete prices -- Rationalizability

- Allowable prices $P=\{0.01,0.02,0.03, \ldots\}$
- Round 1: Any $p_{i}>0.5$ is eliminated
$-p_{i}$ is strictly dominated by σ_{i} with $\sigma_{\mathrm{i}}(.5)=1-\varepsilon$, $\sigma_{i}(.01)=\varepsilon$ for small ε.
- Round m:
$-P=\left\{0.01,0.02, \ldots, p^{m}\right\}$ available prices at round m
- If $p^{m>} .01$, it is strictly dominated by σ_{i} with $\sigma_{\mathrm{i}}\left(p^{m}-\right.$ $.01)=1-\varepsilon, \sigma_{\mathrm{i}}(.01)=\varepsilon$ for small ε.
- Rationalizable strategies: $\{0.01\}$

Bertrand Competition with costly search

- $\quad \mathrm{N}=\{\mathrm{F} 1, \mathrm{~F} 2, \mathrm{~B}\} ; \mathrm{F} 1, \mathrm{~F} 2$ are firms; B is buyer
- B needs 1 unit of good, worth 6;
- Firms sell the good; Marginal cost $=0$.
- Possible prices $\mathrm{P}=$ $\{3,5\}$.
- Buyer can check the prices with a small cost $\mathrm{c}>0$.

Game:

1. Each firm i chooses price p_{i};
2. B decides whether to check the prices;
3. (Given) If he checks the prices, and $\mathrm{p}_{1} \neq \mathrm{p}_{2}$, he buys the cheaper one; otherwise, he buys from any of the firm with probability $1 / 2$.

Mixed-strategy equilibrium

- Symmetric equilibrium: Each firm charges "High" with probability q;
- Buyer Checks with probability r .
- $\mathrm{U}($ check; q$)=\mathrm{q}^{2} 1+\left(1-\mathrm{q}^{2}\right) 3-\mathrm{c}=3-2 \mathrm{q}^{2}-\mathrm{c}$;
- $\mathrm{U}($ Don't;q) $=q 1+(1-q) 3=3-2 q$;
- Indifference: $2 q(1-q)=c$; i.e.,
- $\mathrm{U}(\mathrm{high} ; \mathrm{q}, \mathrm{r})=(1-\mathrm{r}(1-\mathrm{q})) 5 / 2$;
- $\mathrm{U}(\mathrm{low} ; \mathrm{q}, \mathrm{r})=\mathrm{qr} 3+(1-\mathrm{qr}) 3 / 2$
- Indifference: $r=2 /(5-2 q)$.

MIT OpenCourseWare
http://ocw.mit.edu
14.12 Economic Applications of Game Theory

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

