1. A consumer has a continuous, strictly increasing, quasi-concave utility function. You know that the consumer's expenditure function is $e\left(p_{1}, p_{2}, u\right)=\frac{p_{1} p_{2}}{p_{1}+p_{2}} u$.
(a) Show that by considering what happens when one price goes to infinity it is easy to find $u\left(x_{1}, 0\right)$ and $u\left(0, x_{2}\right)$.
(b) For what values of x_{1} does there exist a nonnegative x_{2} such that $u\left(x_{1}, x_{2}\right)=u_{0}$?
(c) Let x_{1} be in the range you identified in part (b). By fixing $p_{1}=1$ and considering what happens when the consumer faces prices $\left(1, p_{2}\right)$ and has wealth $e\left(1, p_{2}, u_{0}\right)$ you can find a set of values of x_{2} for which $u\left(x_{1}, x_{2}\right) \leq u_{0}$. What do you know about the largest x_{2} in this set? Use this approach to describe the indifference curve $u\left(x_{1}, x_{2}\right)=u_{0}$, i.e. find the function $x_{2}\left(x_{1}, u_{0}\right)$ such that $u\left(x_{1}, x_{2}\left(x_{1}, u_{0}\right)\right)=u_{0}$?
(d) Can you see how to use this information to very quickly find $u\left(x_{1}, x_{2}\right)$?
2. MWG Exercise 4.D.5.

MIT OpenCourseWare
http://ocw.mit.edu
14.121 Microeconomic Theory I Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

