Lecture 9: Attitudes toward Risk

Alexander Wolitzky

MIT
14.121

Money Lotteries

Today: special case of choice under uncertainty where outcomes are measured in dollars.

Set of consequences C is subset of \mathbb{R}.
A lottery is a cumulative distribution function F on \mathbb{R}.
Assume preferences have expected utility representation:

$$
U(F)=E_{F}[u(x)]=\int u(x) d F(x)
$$

Assume u increasing, differentiable.
Question: how do properties of von Neumann-Morgenstern utility function u relate to decision-maker's attitude toward risk?

Expected Value vs. Expected Utility

Expected value of lottery F is

$$
E_{F}[x]=\int x d F(x)
$$

Expected utility of lottery F is

$$
E_{F}[u(x)]=\int u(x) d F(x)
$$

Can learn about consumer's risk attitude by comparing $E_{F}[u(x)]$ and $u\left(E_{F}[x]\right)$.

Risk Attitude: Definitions

Definition

A decision-maker is risk-averse if she always prefers the sure wealth level $E_{F}[x]$ to the lottery F : that is,

$$
\int u(x) d F(x) \leq u\left(\int x d F(x)\right) \text { for all } F
$$

A decision-maker is strictly risk-averse if the inequality is strict for all non-degenerate lotteries F.
A decision-maker is risk-neutral if she is always indifferent:

$$
\int u(x) d F(x)=u\left(\int x d F(x)\right) \text { for all } F
$$

A decision-maker is risk-loving if she always prefers the lottery:

$$
\int u(x) d F(x) \geq u\left(\int x d F(x)\right) \text { for all } F
$$

Risk Aversion and Concavity

Statement that $\int u(x) d F(x) \leq u\left(\int x d F(x)\right)$ for all F is called Jensen's inequality.

Fact: Jensen's inequality holds iff u is concave.
This implies:
Theorem
A decision-maker is (strictly) risk-averse if and only if u is (strictly) concave.
A decision-maker is risk-neutral if and only if u is linear.
A decision-maker is (strictly) risk-loving if and only if u is (strictly) convex.

Certainty Equivalents

Can also define risk-aversion using certainty equivalents.

Definition

The certainty equivalent of a lottery F is the sure wealth level that yields the same expected utility as F : that is,

$$
C E(F, u)=u^{-1}\left(\int u(x) d F(x)\right)
$$

Theorem
A decision-maker is risk-averse iff $C E(F, u) \leq E_{F}(x)$ for all F.
A decision-maker is risk-neutral iff $C E(F, u)=E_{F}(x)$ for all F.
A decision-maker is risk-loving iff $C E(F, u) \geq E_{F}(x)$ for all F.

Quantifying Risk Attitude

We know what it means for a consumer to be risk-averse.
What does it mean for one consumer to be more risk-averse than another?

Two possibilities:

1. u is more risk-averse than v if, for every F, $C E(F, u) \leq C E(F, v)$.
2. u is more risk-averse than v if u is "more concave" than v, in that $u=g \circ v$ for some increasing, concave g.

One more, based on local curvature of utility function: u is more-risk averse than v if, for every x,

$$
-\frac{u^{\prime \prime}(x)}{u^{\prime}(x)} \geq-\frac{v^{\prime \prime}(x)}{v^{\prime}(x)}
$$ absolute risk-aversion.

An Equivalence

Theorem
The following are equivalent:

1. For every $F, C E(F, u) \leq C E(F, v)$.
2. There exists an increasing, concave function g such that $u=g \circ v$.
3. For every $x, A(x, u) \geq A(x, v)$.

Risk Attitude and Wealth Levels

How does risk attitude vary with wealth?
Natural to assume that a richer individual is more willing to bear risk: whenever a poorer individual is willing to accept a risky gamble, so is a richer individual.

Captured by decreasing absolute risk-aversion:

Definition
A von Neumann-Morenstern utility function u exhibits decreasing (constant, increasing) absolute risk-aversion if $A(x, u)$ is decreasing (constant, increasing) in x.

Risk Attitude and Wealth Levels

Theorem
Suppose u exhibits decreasing absolute risk-aversion.
If the decision-maker accepts some gamble at a lower welath level, she also accepts it at any higher wealth level: that is, for any lottery $F(x)$, if

$$
E_{F}[u(w+x)] \geq u(w)
$$

then, for any $w^{\prime}>w$,

$$
E_{F}\left[u\left(w^{\prime}+x\right)\right] \geq u\left(w^{\prime}\right) .
$$

Multiplicative Gambles

What about gambles that multiply wealth, like choosing how risky a stock portfolio to hold?
Are richer individuals also more willing to bear multiplicative risk?
Depends on increasing/decreasing relative risk-aversion:

$$
R(x, u)=-\frac{u^{\prime \prime}(x)}{u^{\prime}(x)} x
$$

Theorem
Suppose u exhibits decreasing relative risk-aversion.
If the decision-maker accepts some multiplicative gamble at a lower wealth level, she also accepts it at any higher wealth level: that is, for any lottery $F(t)$, if

$$
E_{F}[u(t w)] \geq u(w)
$$

then, for any $w^{\prime}>w$,

$$
E_{F}\left[u\left(t w^{\prime}\right)\right] \geq u\left(w^{\prime}\right) .
$$

Relative Risk-Aversion vs. Absolute Risk-Aversion

$$
R(x)=x A(x)
$$

decreasing relative risk-aversion \Longrightarrow decreasing absolute risk-aversion
increasing absolute risk-aversion \Longrightarrow increasing relative risk-aversion

Ex. decreasing relative risk-aversion \Longrightarrow more willing to gamble 1% of wealth as get richer.
So certainly more willing to gamble a fixed amount of money.

Application: Insurance

Risk-averse agent with wealth w, faces probability p of incurring monetary loss L.

Can insure against the loss by buying a policy that pays out a if the loss occurs.

Policy that pays out a costs qa.
How much insurance should she buy?

Agent's Problem

$$
\max _{a} p u(w-q a-L+a)+(1-p) u(w-q a)
$$

u concave \Longrightarrow concave problem, so FOC is necessary and sufficient.

FOC:

$$
p(1-q) u^{\prime}(w-q a-L+a)=(1-p) q u^{\prime}(w-q a)
$$

Equate marginal benefit of extra dollar in each state.

Actuarily Fair Prices

Insurance is actuarily fair if expected payout qa equals cost of insurance $p a$: that is, $p=q$.

With acturarily fair insurance, FOC becomes

$$
u^{\prime}(w-q a-L+a)=u^{\prime}(w-q a)
$$

Solution: $a=L$
A risk-averse consumer facing actuarily fair prices will always fully insure.

Actuarily Unfair Prices

What if insurance company makes a profit, so $q>p$?
Rearrange FOC as

$$
\frac{u^{\prime}(w-q a-L+a)}{u^{\prime}(w-q a)}=\frac{(1-p) q}{p(1-q)}>1
$$

Solution: $a<L$
A risk-averse consumer facing actuarily unfair prices will never fully insure.

Intuition: u approximately linear for small risks, so not worth giving up expected value to insure away last little bit of variance.

Comparative Statics

$$
\max _{a} p u(w-q a-L+a)+(1-p) u(w-q a)
$$

Bigger loss \Longrightarrow buy more insurance (a^{*} increasing in L) Follows from Topkis' theorem.

If agent has decreasing absolute risk-aversion, then she buys less insurance as she gets richer.
See notes for proof.

Application: Portfolio Choice

Risk-averse agent with wealth w has to invest in a safe asset and a risky asset.

Safe asset pays certain return r.
Risky asset pays random return z, with cdf F.
Agent's problem

$$
\max _{a \in[0, w]} \int u(a z+(w-a) r) d F(z)
$$

First-order condition

$$
\int(z-r) u^{\prime}(a z+(w-a) r) d F(z)=0
$$

Risk-Neutral Benchmark

Suppose $u^{\prime}(x)=\alpha x$ for some $\alpha>0$.
Then

$$
U(a)=\int \alpha(a z+(w-a) r) d F(z)
$$

SO

$$
U^{\prime}(a)=\alpha(E[z]-r) .
$$

Solution: set $a=w$ if $E[z]>r$, set $a=0$ if $E[z]<r$.
Risk-neutral investor puts all wealth in the asset with the highest rate of return.

$r>E[z]$ Benchmark

$$
U^{\prime}(0)=\int(z-r) u^{\prime}(w) d F=(E[z]-r) u^{\prime}(w)
$$

If safe asset has higher rate of return, then even risk-averse investor puts all wealth in the safe asset.

More Interesting Case

What if agent is risk-averse, but risky asset has higher expected return?

$$
U^{\prime}(0)=(E[z]-r) u^{\prime}(w)>0
$$

If risky asset has higher rate of return, then risk-averse investor always puts some wealth in the risky asset.

Comparative Statics

Does a less risk-averse agent always invest more in the risky asset?
Sufficient condition for agent v to invest more than agent u :

$$
\begin{gathered}
\int(z-r) u^{\prime}(a z+(w-a) r) d F=0 \\
\Longrightarrow \int(z-r) v^{\prime}(a z+(w-a) r) d F \geq 0
\end{gathered}
$$

u more risk-averse $\Longrightarrow v=h \circ u$ for some increasing, convex h.
Inequality equals

$$
\int(z-r) h^{\prime}(u(a z+(w-a) r)) u^{\prime}(a z+(w-a) r) d F \geq 0
$$

$h^{\prime}(\cdot)$ positive and increasing in z
\Longrightarrow multiplying by $h^{\prime}(\cdot)$ puts more weight on positive $(z>r)$ terms, less weight on negative terms.

A less risk-averse agent always invests more in the risky asset.

MIT OpenCourseWare
http://ocw.mit.edu

14.121 Microeconomic Theory I
 Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

