Handout on Extemalities

1. Two roads, mandatory trips.

$F_{i}\left(N_{i}\right)$ is the cost foreach person using road i if there are N_{i} people on road i, assumed to be nondecreasing in N, and increasing for some of the analysis.

There is a continuum of households of measure H.
Utility maximization:

$$
\begin{equation*}
\operatorname{Max} u^{h}=I^{h}-\operatorname{Min}\left[F_{1}\left(N_{1}\right), F_{2}\left(N_{2}\right)\right] \tag{1.1}
\end{equation*}
$$

Equilibrium assuming both roads are used in equilibrium:

$$
\begin{align*}
& F_{1}\left(N_{1}\right)=F_{2}\left(N_{2}\right) \tag{1.2}\\
& N_{1}+N_{2}=H
\end{align*}
$$

If only one road is used, then

$$
\begin{equation*}
F_{1}(H) \leq F_{2}(0) \tag{1.3}
\end{equation*}
$$

Consider conditions for Pa reto optima lity for the subset of Pareto optima where everyone has positive income at the optimum.

Note that in this case, income distribution does not matter for optimal road use and we can derive the optimal road use by maximizing the sum of utilities.

There are other Pareto optima where these conditions do not hold - where all of the income goes to a subset of the people who get all the income and may also get a "better" road.

Max $\quad \sum_{h} I^{h}-N_{1} F_{1}\left(N_{1}\right)-N_{2} F_{2}\left(N_{2}\right)$
subject to $N_{1}+N_{2}=H$

If both roads are used, we have the FOC:

$$
\begin{equation*}
F_{1}\left(N_{1}\right)+N_{1} F_{1}^{\prime}\left(N_{1}\right)=F_{2}\left(N_{2}\right)+N_{2} F_{2}^{\prime}\left(N_{2}\right) \tag{1.5}
\end{equation*}
$$

If just one road is used:

$$
\begin{equation*}
F_{1}(H)+H F_{1}^{\prime}(H) \leq F_{2}(0) \tag{1.6}
\end{equation*}
$$

In general the equilibrium is not Pa reto optimal.

However, it can be Pareto optimal, for example, when only one road is used and when there is symmetry -

$$
\begin{equation*}
F_{1}(H / 2)=F_{2}(H / 2) \text { and } F_{1}(H / 2)+F_{1}^{\prime}(H / 2) H / 2=F_{2}(H / 2)+F_{2}^{\prime}(H / 2) H / 2 \tag{1.7}
\end{equation*}
$$

When equilibrium is not Pa reto optimal, optima lity can be restored either by taxing one of the roads or by subsid izing the other, with the revenue (or subsidy cost) covered by lump-sum taxes. When there are taxeson each road the equilibrium becomes

$$
\begin{align*}
& F_{1}\left(N_{1}\right)+t_{1}=F_{2}\left(N_{2}\right)+t_{2} \tag{1.8}\\
& N_{1}+N_{2}=H
\end{align*}
$$

For the optimal N_{i} equation 1.8 gives us a continuum of values of the two taxesthat achieve the equilibrium. This does not extend to the next example.

2. Two roads, voluntary trips.

h distributed uniformly on $[0,1]$
utility of trip for household h is g^{h}, decreasing in h.

Utility maximization:

$$
\begin{equation*}
u^{h}=I^{h}+\operatorname{Max}\left[0, g^{h}-F_{1}\left(N_{1}\right), g^{h}-F_{2}\left(N_{2}\right)\right] \tag{2.1}
\end{equation*}
$$

Equilibrium assuming both roads are used in equilibrium:

$$
\begin{align*}
& g^{N_{1}+N_{2}}=F_{1}\left(N_{1}\right)=F_{2}\left(N_{2}\right) \tag{2.2}\\
& N_{1}+N_{2} \leq H
\end{align*}
$$

Conditions for Pareto optimum for optima where everyone has positive income at the optimum.

$$
\begin{array}{ll}
\text { Max } & \int_{0}^{1} I^{h}+\int_{0}^{N_{1}+N_{2}} g^{h} d h-N_{1} F_{1}\left(N_{1}\right)-N_{2} F_{2}\left(N_{2}\right) \tag{2.3}\\
\text { subject to } & N_{1}+N_{2} \leq H
\end{array}
$$

If both roads are used and some people do not make the trip, we have the FOC:

$$
\begin{equation*}
g^{N_{1}+N_{2}}=F_{1}\left(N_{1}\right)+N_{1} F_{1}^{\prime}\left(N_{1}\right)=F_{2}\left(N_{2}\right)+N_{2} F_{2}^{\prime}\left(N_{2}\right) \tag{2.4}
\end{equation*}
$$

The optimum can be achieved by particulartaxes on each road:

$$
\begin{align*}
& g^{N_{1}+N_{2}}=F_{1}\left(N_{1}\right)+t_{1}=F_{2}\left(N_{2}\right)+t_{2} \tag{2.5}\\
& N_{1}+N_{2} \leq H
\end{align*}
$$

3. Production Economy with consumption extemalities.

Assume a lineartechnology.

To derive conditions for Pa reto optimality:

$$
\begin{align*}
& \operatorname{Max} \sum_{h} \alpha^{h} u^{h}\left(x^{h}, x^{\sim h}\right) \tag{3.1}\\
& \text { s.t } p \cdot \sum_{h} x^{h}=A
\end{align*}
$$

FOC:

$$
\begin{equation*}
\sum_{h} \alpha^{h} \frac{\partial u^{h}}{\partial x_{j}^{i}}=\lambda p_{j} \quad \vee i, j \tag{3.2}
\end{equation*}
$$

Rea ranging terms:

$$
\begin{equation*}
\alpha^{i} \frac{\partial u^{i}}{\partial x_{j}^{i}}=\lambda p_{j}-\sum_{h \neq i} \alpha^{h} \frac{\partial u^{h}}{\partial x_{j}^{i}} \tag{3.3}
\end{equation*}
$$

Assume good 1 has no extemalities and is the numeraire:

$$
\begin{equation*}
\alpha^{h} \frac{\partial u^{h}}{\partial x_{1}^{h}}=\lambda p_{1}=\lambda \quad \forall h \tag{3.4}
\end{equation*}
$$

Dividing 3.3 by 3.4:

$$
\begin{equation*}
\frac{\partial u^{i} / \partial x_{j}^{i}}{\partial u^{i} / \partial x_{1}^{i}}=\frac{p_{j}}{p_{1}}-\sum_{h \neq i} \frac{\partial u^{h} / \partial x_{j}^{i}}{\partial u^{h} / \partial x_{1}^{h}} \tag{3.5}
\end{equation*}
$$

Introducing taxes on transactions, with taxespotentially being different for different individuals:

$$
\begin{equation*}
t_{j}^{i}=-\sum_{h \neq i} \frac{\partial u^{h} / \partial x_{j}^{i}}{\partial u^{h} / \partial x_{1}^{h}} \tag{3.6}
\end{equation*}
$$

With these taxes, we can decentralize. We can see this by comparing FOC for individual choice with conditions for PO.

$$
\begin{align*}
& \operatorname{Max} u^{h}\left(x^{h}, x^{-h}\right) \tag{3.7}\\
& \text { s.t } \quad \sum_{\mathrm{j}}\left(p_{j}+t_{j}^{h}\right) x_{j}^{h}=I^{h}
\end{align*}
$$

FOC:

$$
\begin{gather*}
\partial u^{h} / \partial x_{j}^{h}=\lambda^{h}\left(p_{j}+t_{j}^{h}\right)=\lambda^{h}\left(p_{j}-\sum_{i \neq h} \frac{\partial u^{i} / \partial x_{j}^{h}}{\partial u^{i} / \partial x_{1}^{i}}\right) \tag{3.8}\\
\partial u^{h} / \partial x_{1}^{h}=\lambda^{h} p_{1} \tag{3.9}
\end{gather*}
$$

Using (3.3) and (3.9), income levels must then be chosen so that

$$
\begin{equation*}
\lambda=\alpha^{h} \lambda^{h} \quad \forall h \tag{3.10}
\end{equation*}
$$

4. Pure public good.

Now consider govemment controlled expenditures, G, which potentially enter every utility function. We continue to assume a lineartechnology. Conditions for Pareto optimality:

$$
\begin{gather*}
\text { Max } \sum \alpha^{h} u^{h}\left(x^{h}, G\right) \tag{4.1}\\
\text { s.t } \quad p \cdot \sum x^{h}+p_{G} G=R \\
\alpha^{h} \frac{\partial u^{h}}{\partial x_{i}^{h}}=\lambda p_{i} \tag{4.2}\\
\sum_{h} \alpha^{h} \frac{\partial u^{h}}{\partial G}=\lambda p_{G} \tag{4.3}
\end{gather*}
$$

Dividing 4.3 by 4.2:

$$
\begin{equation*}
\sum_{h} \frac{\partial u^{h} / \partial G}{\partial u^{h} / \partial x_{i}^{h}}=\frac{p_{G}}{p_{i}} \tag{4.4}
\end{equation*}
$$

