Handout on stock market model

consumption in period 0

2 periods, 1 good per period, multiplicative uncertainty only assets: safe real bond, shares

Notation:

 x_0

x_{1s}	consumption in period 1 in state s
$\pi^{\scriptscriptstyle h}_{\scriptscriptstyle s}$	subjective probability of household h for state s
b	bonds
q	price of bonds
D_s^f	dividends of firm f in state s
$q^{\scriptscriptstyle f}$	price of all shares in firm f
$oldsymbol{ heta}_{f}^{h}$	fraction of firm f owned by household h after purchase
$ heta_{\scriptscriptstyle f}^{\scriptscriptstyle eh}$	fraction of firm f in initial endowment of household h

 k^f input of firm f

Consumer choice:

$$\max_{x_0, x_1} \sum_{s} \pi_s^h u^h (x_0, x_{1s})$$

s.t.
$$x_0 + qb + \sum_{f} q^f \theta_f^h = e_0^h + \sum_{f} q^f \theta_f^{eh}$$
$$x_{1s} = b + \sum_{f} \theta_f^h D_s^f + e_s^h \quad \forall s$$
(1)

Dividend payment:

$$y_{s}^{f} = a_{s}^{f} g^{f} \left(k^{f} \right)$$

$$D_{s}^{f} = a_{s}^{f} g^{f} \left(k^{f} \right) - \frac{k^{f}}{q}$$
(2)

Firm maximization of stock market value:

$$\max_{k} q^{f}$$
(3)
s.t. "competitive perceptions"

$$\left(q^{f}+k^{f}\right)\frac{g^{\prime f}\left(k^{f}\right)}{g^{f}\left(k^{f}\right)}=1$$
(4)

Market clearance

$$\sum_{h} x_{0}^{h} = \sum_{h} e_{0}^{h} - \sum_{f} k^{f}$$
(5)

Conditions for constrained Pareto optimality:

$$\max \sum_{s} \pi_{s}^{1} u^{1} \left(x_{0}^{1}, x_{1s}^{1} \right)$$

s.t. $\sum_{s} \pi_{s}^{h} u^{h} \left(x_{0}^{h}, x_{1s}^{h} \right) = \overline{v}^{h}, \quad h = 2, ..., H$
 $\sum_{h} x_{0}^{h} = \sum_{h} e_{0}^{h} - \sum_{f} k^{f}$
 $x_{1s}^{h} = e_{1s}^{h} + \sum_{f} \mu_{f}^{h} y_{s}^{f} + z^{h}$
 $\sum_{h} z^{h} = 0$
 $\sum_{h} \mu_{f}^{h} = 1$
(6)