Handout contrasting stock market (SM) and complete contingent commodity (CCC) models

2 periods, 1 good per period, multiplicative uncertainty no-bankruptcy and no-short-sales constraints not binding second period has S states

SM: only assets: safe real bond, shares

Notation
b bonds $\quad p_{0} \quad$ price of good in period 0
q price of bonds
$D_{s}^{f} \quad$ dividends of firm f in state s
$q^{f} \quad$ price of all shares in firm f
$\theta_{f}^{h} \quad$ fraction of firm f purchased by household h
$\theta_{f}^{e h} \quad$ fraction of firm f in initial endowment of household h

Consumer choice:

$$
\begin{array}{ll}
\max _{x_{0}, x_{1}} \sum_{s} \pi_{s}^{h} u^{h}\left(x_{0}, x_{1 s}\right) & \max _{x_{0}, x_{1}} \sum_{s} \pi_{s}^{h} u^{h}\left(x_{0}, x_{1 s}\right) \\
\text { s.t. } x_{0}+q b+\sum_{f} q^{f} \theta_{f}^{h}=e_{0}^{h}+\sum_{f} q^{f} \theta_{f}^{e h} & \text { s.t. } p_{0} x_{0}+\sum_{s} p_{1 s} x_{1 s}=\sum_{f} \theta_{f}^{e h} Q^{f}+\sum_{s} p_{1 s} e_{s}^{h} \\
x_{1 s}=b+\sum_{f} \theta_{f}^{h} D_{s}^{f}+e_{s}^{h} \quad \forall \mathrm{~s} &
\end{array}
$$

CCC: all commodities
$p_{1 s} \quad$ price of good in state s in period 1
$Q^{f} \quad$ profit of firm f

SM has $S+1$ budget constraints, while CCC has 1 .

$$
\begin{equation*}
D_{s}^{f}=a_{s}^{f} g^{f}\left(k^{f}\right)-\frac{k^{f}}{q} \tag{2}
\end{equation*}
$$

$$
Q^{f}=\sum_{s} p_{1 s} a_{s}^{f} g^{f}\left(k^{f}\right)-p_{0} k^{f}
$$

Firm choice:
$\max _{k} q^{f}$
s.t. "competitive perceptions"
$\max _{k} Q^{f}$
s.t. "competitive perceptions"

First order conditions:

$$
\begin{equation*}
\left(q^{f}+k^{f}\right) \frac{g^{\prime f}\left(k^{f}\right)}{g^{f}\left(k^{f}\right)}=1 \tag{4}
\end{equation*}
$$

$$
\sum_{s} p_{1 s} a_{s}^{f} g^{\prime f}\left(k^{f}\right)=p_{0}
$$

Market clearance:

$$
\begin{array}{rlrl}
\sum_{h} x_{0}^{h} & =\sum_{h} e_{0}^{h}-\sum_{f} k^{f} x_{0}^{h}=\sum_{h} e_{0}^{h}-\sum_{f} k^{f} \\
\sum_{h} \theta_{f}^{h}=1 \mathrm{f}=1, \ldots, \mathrm{~F} & \sum_{h} x_{1 s}^{h}=\sum_{h} e_{1 s}^{h}+\sum_{f} a_{s}^{f} g^{f}\left(k^{f}\right) \mathrm{s}=1, \ldots, \mathrm{~S} \\
\sum_{h} q b^{h} & =\sum_{f} k^{f} & \tag{5c}
\end{array}
$$

Note that Walras Law gives (5c).

Constrained Pareto optimality:

$$
\begin{array}{ll}
\max & \sum_{s} \pi_{s}^{1} u^{1}\left(x_{0}^{1}, x_{1 s}^{1}\right) \\
\text { s.t. } & \sum_{s} \pi_{s}^{h} u^{h}\left(x_{0}^{h}, x_{1 s}^{h}\right)=v^{-h}, \quad h=2, \ldots, H \\
& \sum_{h} x_{0}^{h}=\sum_{h} e_{0}^{h}-\sum_{f} k^{f} \\
& x_{1 s}^{h}=e_{1 s}^{h}+\sum_{f} \mu_{f}^{h} a_{s}^{f} g^{f}\left(k^{f}\right)+z^{h} \\
& \sum_{h} \mu_{f}^{h}=1 \\
& \sum_{h} z^{h}=0
\end{array}
$$

Pareto optimality:

$$
\begin{align*}
\max & \sum_{s} \pi_{s}^{1} u^{1}\left(x_{0}^{1}, x_{1 s}^{1}\right) \\
\text { s.t. } & \sum_{s} \pi_{s}^{h} u^{h}\left(x_{0}^{h}, x_{1 s}^{h}\right)=v^{-h}, \quad h=2, \ldots, H \\
& \sum_{h} x_{0}^{h}=\sum_{h} e_{0}^{h}-\sum_{f} k^{f} \\
& \sum_{h} x_{1 s}^{h}=\sum_{h} e_{1 s}^{h}+\sum_{f} a_{s}^{f} g^{f}\left(k^{f}\right) \tag{6}
\end{align*}
$$

