14.126 GAME THEORY

PROBLEM SET 1

MIHAI MANEA

Due by Wednesday, February 24, 5pm

Question 1

Consider the following game. Each of 15 students simultaneously announces a number in the set $\{1,2, \ldots, 100\}$. A prize of $\$ 1$ is split equally between all students whose number is closest to $1 / 3$ of the class average.
(a) Compute the sequence of sets of pure strategies $S_{i}^{1}, S_{i}^{2}, \ldots$ defining the process of iterated elimination of strictly dominated strategies for every student i.
(b) Show that the game has a unique Nash equilibrium (in pure or mixed strategies).

Question 2

Provide an example of a 2-player game with strategy set $[0, \infty)$ for either player and payoffs continuous in the strategy profile, such that no strategy survives iterated deletion of strictly dominated strategies $\left(S^{\infty}=\emptyset\right)$, but the set of strategies remaining at every stage is nonempty $\left(S^{k} \neq \emptyset\right.$ for $\left.k=1,2, \ldots\right)$.

Question 3

In the normal form game below player 1 chooses rows, player 2 chooses columns, and

	L	R
	9	0
	0	0

A

B

C

D
player 3 chooses matrices. We only indicate player 3's payoff. Show that action D is not a best response for player 3 to any independent belief about opponents' play (mixed strategy for players 1 and 2), but that D is not strictly dominated. Comment.

Question 4

A game (N, S, u) with $N=\{1,2, \ldots, n\}(n<\infty)$ is symmetric if $S_{i}=S_{j}$ for all $i, j \in N$ and $u_{i}\left(s_{1}, \ldots, s_{n}\right)=u_{\pi(i)}\left(s_{\pi(1)}, \ldots, s_{\pi(n)}\right)$ for every $i \in N$ and all permutations π of N. A (mixed) strategy profile σ is symmetric if $\sigma_{i}=\sigma_{j}$ for all $i, j \in N$. A symmetric Nash equilibrium is a Nash equilibrium in symmetric strategies.
(a) Prove that every symmetric game has a symmetric Nash equilibrium.
(b) For some compact set X, consider a family of symmetric games $\left(N, S, u^{x}\right)_{x \in X}$, where $u_{i}^{x}(s)$ is continuous in x (over X) for every $i \in N$. Show that the correspondence that maps each $x \in X$ to the set of symmetric Nash equilibria of $\left(N, S, u^{x}\right)$ is upperhemicontinuous.

Question 5

Each of two players $i=1,2$ receives a ticket with a number drawn from a finite set Θ_{i}. The number written on a player's ticket represents the size of a prize he may receive. The two prizes are drawn independently, with the value on i 's ticket distributed according to F_{i}. Each player is asked simultaneously (and independently) whether he wants to exchange his ticket for the other player's ticket. If both players agree then the prizes are exchanged; otherwise each player receives his own prize. Find all Bayesian Nash equilibria (in pure or mixed strategies).

Question 6

Consider the infinitely repeated prisoners' dilemma with stage payoffs given below. Assume

	C	D
C	1,1	$-1,2$
	$2,-1$	0,0

that both players discount payoffs by δ. The "tit-for-tat" strategy is formulated as follows.

Start out by playing C. After that, choose the action that the other player used in the previous period. For what values of $\delta \in(0,1)$ does the strategy profile where both players use tit-for-tat constitute a subgame perfect equilibrium?

MIT OpenCourseWare
http://ocw.mit.edu

14.126 Game Theory

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

