14.126 Game theory

Problem Set 3

The due date for this assignment is Thursday April 15. Please quote your sources.

1. Consider a repeated linear Cournot duopoly with one long-run player who maximizes the discounted sum of stage profits (with discount factor δ) and a series of of short-run players as the second firm. The inverse-demand function is $P=1-Q$ and the marginal costs are zero. For each $q \in\{0,0.01,0.02, \ldots, 0.99,1\}$, there is a type of the long-run player who cannot produces any amount other than q,each with probability $\varepsilon / 101$ for some $\varepsilon \in(0,1 / 2)$. Find the set of possible Nash equilibrium payoffs for the long run player as $\delta \rightarrow 1$.
2. Exercise 2 in 14.126 Lecture Notes on Rationalizability.
3. Exercise 4 in 14.126 Lecture Notes on Rationalizability. Assume that the solution concepts are defined on the space of hierarchies corresponding to finite type spaces.
4. Consider a type space $\left(\Theta, T^{*}, p\right)$ where Θ and $T^{*}=T_{1}^{*} \times \cdots \times T_{n}^{*}$ are countable. (For each $t_{i}, p_{t_{i}} \in \Delta\left(\Theta \times T_{-i}^{*}\right)$.) For any $T=T_{1} \times \cdots \times T_{n} \subseteq T^{*}, T$ is said to be a subspace of T^{*} if $p_{t_{i}}\left(\Theta \times T_{-i}\right)=1$ for each $t_{i} \in T_{i}$ and each i. Let X be the set of all subspaces of T^{*}, including the empty set. Show that (X, \supseteq) is a complete lattice. What are join and meet?

MIT OpenCourseWare
http://ocw.mit.edu

14.126 Game Theory

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

