Supermodularity

14. 126 Game Theory
Muhamet Yildiz
Based on Lectures by Paul Milgrom

1

Road Map

- Definitions: lattices, set orders, supermodularity...
- Optimization problems
- Games with Strategic Complements
 - Dominance and equilibrium
 - Comparative statics

Two Aspects of Complements

Constraints

- Activities are complementary if doing one enables doing the other...
- ...or at least doesn't prevent doing the other.
 - This condition is described by sets that are sublattices.

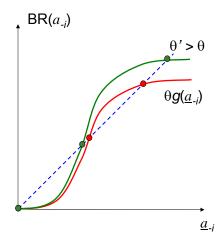
Payoffs

- Activities are complementary if doing one makes it weakly more profitable to do the other...
 - This is described by <u>supermodular</u> payoffs.
- ...or at least doesn't change the other from being profitable to being unprofitable
 - This is described by payoffs satisfying a single crossing condition.

3

Example – Peter-Diamond search model

- A continuum of players
- Each i puts effort a_i, costing a_i²/2;
- Pr *i* finds a match = $a_i g(\underline{a}_{-i})$,
 - <u>a</u>_{-i} is average effort of others
- The payoff from match is θ . $U_i(a) = \theta a_i g(\underline{a}_i) - a_i^2/2$
- Strategic complementarity: $BR(a_{.i}) = \theta g(\underline{a_{.i}})$



Definitions: "Lattice"

• Given a partially ordered set (X, \ge) , define

```
□ The "join": x \lor y = \inf\{z \in X \mid z \ge x, z \ge y\}.
□ The "meet": x \land y = \sup\{z \in X \mid z \le x, z \le y\}.
```

(X,≥) is a "<u>lattice</u>" if it is closed under meet and join:

$$(\forall x, y \in X) x \land y \in X, x \lor y \in X$$

Example: X = R^N,

$$x \ge y \text{ if } x_i \ge y_i, i = 1,..., N$$

 $(x \land y)_i = \min(x_i, y_i); i = 1,..., N$
 $(x \lor y)_i = \max(x_i, y_i); i = 1,..., N$

5

Definitions, 2

- (X,≥) is a "<u>complete lattice</u>" if for every non-empty subset S, a greatest lower bound inf(S) and a least upper bound sup(S) exist in X.
- A function $f: X \rightarrow \mathbf{R}$ is "supermodular" if

$$(\forall x, y \in X) f(x) + f(y) \le f(x \land y) + f(x \lor y)$$

- A function *f* is "submodular" if −*f* is supermodular.
- (if $X = \mathbb{R}$, then f is supermodular.)

Complementarity

- Complementarity/supermodularity has equivalent characterizations:
 - Higher marginal returns

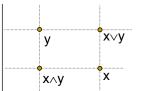
$$f(x \lor y) - f(x) \ge f(y) - f(x \land y)$$

Nonnegative mixed second differences

$$[f(x \lor y) - f(x)] - [f(y) - f(x \land y)] \ge 0$$

 For smooth objectives, non-negative mixed second derivatives:

$$\frac{\partial^2 f}{\partial x_i \partial x_i} \ge 0 \text{ for } i \ne j$$



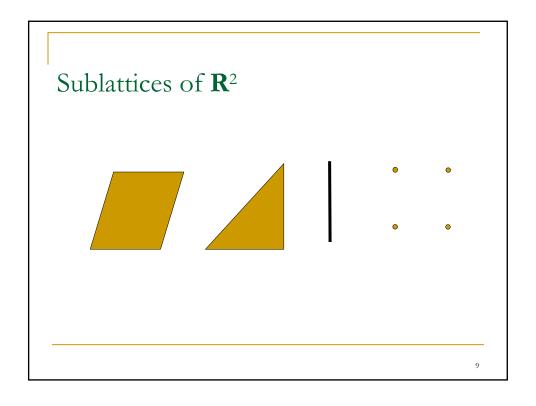
7

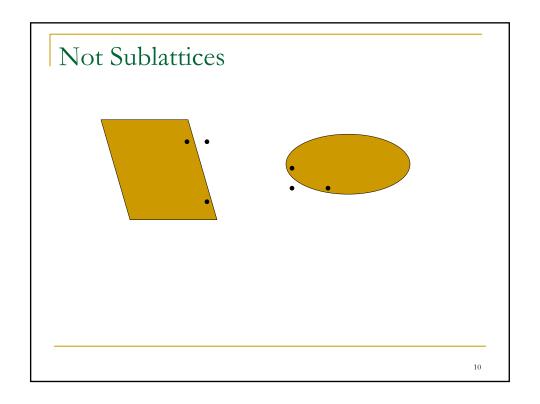
Definitions, 3

 Given two subsets S,T⊂X, "S is <u>as high as</u> T," written S≥T, means

$$[x \in S \& y \in T] \Rightarrow [x \lor y \in S \& x \land y \in T]$$

- A function x^* is "<u>isotone</u>" (or "<u>weakly increasing</u>") if $t \ge t' \Rightarrow x^*(t) \ge x^*(t')$
- A set S is a "<u>sublattice</u>" if S≥S.





"Pairwise" Supermodularity/Increasing differences

- Let f:R^N→R. f is pairwise supermodular (or has increasing differences) iff
 - □ for all $n \neq m$ and x_{-nm} , the restriction $f(.,.,x_{-nm}): \mathbb{R}^2 \rightarrow \mathbb{R}$ is supermodular.
- Lemma: If f has increasing differences and $x_j \ge y_j$ for each j, then $f(x_i, x_{-i}) f(y_i, x_{-i}) \ge f(x_i, y_{-i}) f(y_i, y_{-i})$.
- Proof:

$$f(x_{1}, x_{-1}) - f(x_{1}, y_{-1})$$

$$= \sum_{j>1} f(x_{1}, x_{2}, ..., x_{j}, y_{j+1}, ..., y_{n}) - f(x_{1}, x_{2}, ..., x_{j-1}, y_{j}, ..., y_{n})$$

$$\geq \sum_{j>1} f(y_{1}, x_{2}, ..., x_{j}, y_{j+1}, ..., y_{n}) - f(y_{1}, x_{2}, ..., x_{j-1}, y_{j}, ..., y_{n})$$

$$= f(y_{1}, x_{-1}) - f(y_{1}, y_{-1})$$

11

Pairwise Supermodular = Supermodular

- Theorem (Topkis). Let $f: \mathbb{R}^N \to \mathbb{R}$. Then, f is supermodular if and only if f is pairwise supermodular.
- Proof:
- ⇒ by definition.

$$f(x \vee y) - f(y)$$

$$= \sum_{i} f(x_{1} \vee y_{1}, ..., x_{i} \vee y_{i}, y_{i+1}, ..., y_{n}) - f(x_{1} \vee y_{1}, ..., x_{i-1} \vee y_{i-1}, y_{i}, ..., y_{n})$$

$$= \sum_{i} f(x_{1} \vee y_{1}, ..., x_{i-1} \vee y_{i-1}, x_{i}, y_{i+1}, ..., y_{n}) - f(x_{1} \vee y_{1}, ..., x_{i-1} \vee y_{i-1}, x_{i} \wedge y_{i}, y_{i+1}, ..., y_{n})$$

$$\geq \sum_{i} f(x_{1}, ..., x_{i-1}, x_{i}, x_{i+1} \wedge y_{i+1}, ..., x_{n} \wedge y_{n}) - f(x_{1}, ..., x_{i-1}, x_{i} \wedge y_{i}, x_{i+1} \wedge y_{i+1}, ..., x_{n} \wedge y_{n})$$

$$= f(x) - f(x \wedge y)$$

QED

Supermodularity in product spaces

- Let $X = X_1 \times X_2 \times ... \times X_n$, $f: X \to \mathbb{R}$.
- Then, f is supermodular iff
 - \Box For each *i*, the restriction of *f* to X_i is supermodular
 - □ *f* has increasing differences.

13

"Pairwise" Sublatices

■ Theorem (Topkis). Let S be a sublattice of R^N. Define

$$S_{ij} = \left\{ x \in \Re^{N} \mid \left(\exists z \in S \right) x_{i} = z_{i}, x_{j} = z_{j} \right\}$$

Then, $S = \bigcap_{i,j} S_{ij}$.

 Remark. Thus, a sublattice can be expressed as a collection of constraints on pairs of arguments. In particular, undecomposable constraints like

$$x_1 + x_2 + x_3 \le 1$$

can never describe in a sublattice.

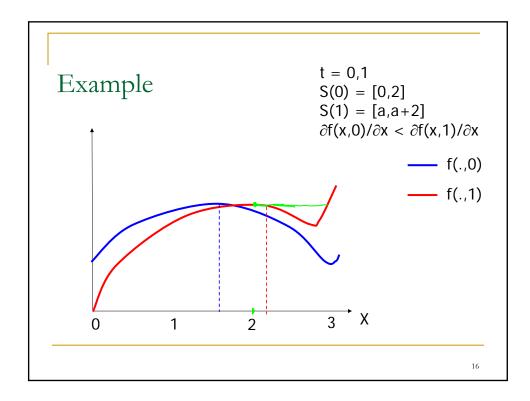
Monotonicity Theorem

<u>Theorem (Topkis)</u>. Let $f: X \times \mathbb{R} \rightarrow \mathbb{R}$ be a supermodular function and define

$$x^*(t) \equiv \underset{x \in S(t)}{\operatorname{argmax}} f(x, t).$$

If $t \ge t'$ and $S(t) \ge S(t')$, then $x^*(t) \ge x^*(t')$.

- Corollary. Let $f: X \times \mathbb{R} \to \mathbb{R}$ be a supermodular function and suppose S(t) is a sublattice. Then, $x^*(t)$ is a sublattice.
- Proof of Corollary. Trivially, $t \ge t$, so $S(t) \ge S(t)$ and $x^*(t) \ge x^*(t)$. **QED**



Proof of Monotonicity Theorem

- $[t \ge t', S(t) \ge S(t') \Rightarrow x^*(t) \ge x^*(t'), \text{ where } x^*(t) = \operatorname{argmax}_{x \in S(t)} f(x,t)]$
- Suppose that f is supermodular and that $x \in x^*(t), x' \in x^*(t'), t > t'$.

Then, $(x \wedge x') \in S(t'), (x \vee x') \in S(t)$ So, $f(x,t) \ge f(x \vee x',t)$ and $f(x',t') \ge f(x \wedge x',t')$.

If either any of these inequalities are strict then their sum contradicts supermodularity:

$$f(\mathbf{X},t)+f(\mathbf{X}',t')>f(\mathbf{X}\wedge\mathbf{X}',t')+f(\mathbf{X}\vee\mathbf{X}',t).$$

QED

17

Application: Pricing Decisions

A monopolist facing demand D(p,t) produces at unit cost
 c.

$$p^{*}(c,t) = \operatorname{argmax}_{p}(p-c)D(p,t)$$
$$= \operatorname{argmax}_{p} \log(p-c) + \log(D(p,t))$$

- $p^*(c,t)$ is always isotone in c.
- $p^*(c,t)$ is isotone in t if log(D(p,t)) is supermodular in (p,t),
 - □ i.e. supermodular in (log(p),t),
 - □ i.e. increases in *t* make demand less elastic:

$$\frac{\partial \log D(p,t)}{\partial \log(p)}$$
 nondecreasing in t

Application: Auction Theory

- A firm's value of winning an item at price p is U(p,t), where t is the firm's type. (Losing is normalized to zero.) A bid of p wins with probability F(p).
- Question: Can we conclude that p(t) is nondecreasing, without knowing F?

$$p_F^*(t) = \underset{p}{\operatorname{argmax}} U(p, t) F(p)$$
$$= \underset{p}{\operatorname{argmax}} \log (U(p, t)) + \log (F(p))$$

• Answer: Yes, if log(U(p,t)) is supermodular.

19

Application: Production Theory

Problem:

$$\max_{k,l} pf(k,l) - L(l,w) - K(k,r)$$

- Suppose that L is supermodular in the natural order, for example, L(I, w)=wI.
 - □ Then, -L is supermodular when the order on I is reversed.
 - \Box $I^*(w)$ is nonincreasing in the natural order.
- If f is supermodular, then $k^*(w)$ is also nonincreasing.
 - That is, capital and labor are "price theory complements."
- If f is submodular, then capital and labor are "price theory substitutes."

Convergence in Lattices

- Consider a complete lattice (X,≥).
- Consider a topology on X in which
 - □ For any sequence $(x_m)_{m>0}$ with $x_m \ge x_{m+1} \ \forall m$, $x_m \rightarrow \inf \{ x_m : m > 0 \}$
 - □ For any sequence $(x_m)_{m>0}$ with $x_{m+1} \ge x_m \ \forall m$, $x_m \to \sup \{x_m : m > 0\}$

21

Introduction to Supermodular Games

Formulation

A game (N, S, U) is supermodular if

- N players (infinite is okay)
- Strategy sets (X_n, \ge_n) are complete lattices $\underline{x}_n = \min X_n, \overline{x}_n = \max X_n$
- Payoff functions $U_n(x)$ are
 - continuous
 - supermodular in own strategy and has increasing differences with others' strategies

$$(\forall n)(\forall x_n, x'_n \in X_n)(\forall x_{-n} \ge x'_{-n} \in X_{-n})$$

$$U_n(x) + U_n(x') \le U_n(x \land x') + U_n(x \lor x')$$

23

Bertrand Oligopoly Models

Linear/supermodular Oligopoly:

Demand:
$$Q_n(x) = A - ax_n + \sum_{j \neq n} b_j x_j$$

Profit: $U_n(x) = (x_n - c_n) Q_n(x)$
 $\frac{\partial U_n}{\partial x_m} = b_m(x_n - c_n)$ which is increasing in x_n

Linear Cournot Duopoly

- Inverse Demand: $P(x) = A x_1 x_2$ $U_n(x) = x_n P(x) - C_n(x_n)$ $\frac{\partial U_n}{\partial x_m} = -x_n$
- Linear Cournot duopoly (but not more general oligopoly) is supermodular if one player's strategy set is given the reverse of its usual order.

Analysis of Supermodular Games

Extremal Best Reply Functions

$$B_n(x) = \max \left(\arg \max_{x'_n \in X_n} U_n(x'_n, x_{-n}) \right)$$

$$b_n(x) = \min \left(\operatorname{argmax} U_n(x'_n, x_{-n}) \right)$$

- $b_n(x) = \min \left(\arg\max_{x_n' \in X_n} U_n(x_n', x_{-n}) \right)$
 By Topkis's Theorem, these are isotone functions.
- Lemma:

$$\neg [x_n \ge b_n(\underline{x})] \Rightarrow [x_n \text{ is strictly dominated by } b_n(\underline{x}) \lor x_n]$$

If
$$\neg [x_n \ge b_n(\underline{x})]$$
, then

$$U_n(x_n \vee b_n(\underline{x}), x_{-n}) - U_n(x_n, x_{-n}) \geq U_n(b_n(\underline{x}), \underline{x}_{-n}) - U_n(x_n \wedge b_n(\underline{x}), \underline{x}_{-n}) > 0$$

Supermodularity + increasing differences

Rationalizability & Equilibrium

 Theorem (Milgrom & Roberts): The smallest rationalizable strategies for the players are given by

$$\underline{z} = \lim_{k \to \infty} b^k(\underline{x})$$

Similarly the largest rationalizable strategies for the players are given by

$$\overline{z} = \lim_{k \to \infty} B^k(\overline{x})$$

Both are Nash equilibrium profiles.

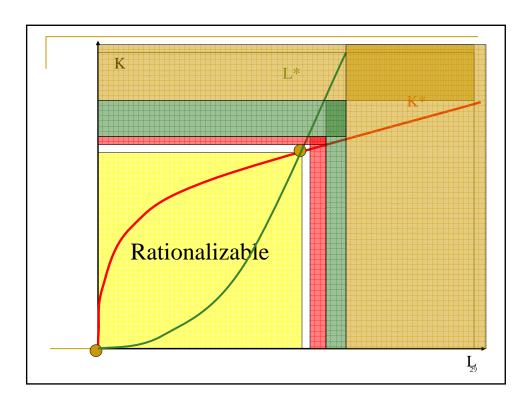
- Corollary: there exist pure strategy Nash equilibria \overline{z} and \underline{z} s.t.
 - □ For each rationalizable x, $\bar{z} \ge x \ge z$.
 - □ For each Nash equilibrium $x, \bar{z} \ge x \ge \underline{z}$.

2

Partnership Game

- Two players; employer (E) and worker (W)
- E and W provide K and L, resp.
- Output: $f(K,L) = K^{\alpha}L^{\beta}$, $0 < \alpha,\beta,\alpha+\beta < 1$.
- Payoffs of E and W:

$$f(K,L)/2 - K$$
, $f(K,L)/2 - L$.



Proof

- $b^k(\underline{x})$ is isotone and X is complete, so $\lim_{x \to \infty} b^k(\underline{x})$ exists.
- By continuity of payoffs, its limit is a fixed point of b, and hence a Nash equilibrium.
- $x_n \ngeq \underline{z}_n \Rightarrow x_n \ngeq b_n^k(\underline{x})$ for some k, and hence x_n is deleted during iterated deletion of dominated strategies.
- QED

Comparative Statics

- <u>Theorem</u>. (Milgrom & Roberts) Consider a family of supermodular games with payoffs parameterized by t. Suppose that for all n, x_{-n}, U_n(x_n,x_{-n};t) is supermodular in (x_n,t). Then
 <u>Z</u>(t), Z(t) are isotone.
- Proof. By Topkis's theorem, $b_t(x)$ is isotone in t. Hence, if t > t',

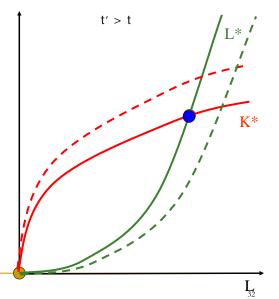
$$b_t^k(\underline{x}) \geq b_t^k(\underline{x})$$

$$\underline{z}(t) = \lim_{k \to \infty} b_t^k(\underline{x}) \ge \lim_{k \to \infty} b_t^k(\underline{x}) \ge \underline{z}(t')$$

and similarly for \overline{z} . **QED**

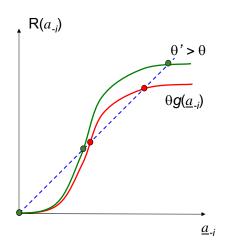
31

 $f(K,L) = tK^{\alpha}L^{\beta},$



Example – Peter-Diamond search model

- A continuum of players
- Each i puts effort a_i, costing a_i²/2;
- Pr i finds a match $a_i g(\underline{a}_{-i})$,
 - <u>a</u>_{-i} is average effort of others
- The payoff from match is θ . $U(a) = \theta a_i g(\underline{a}_{-i}) - a_i^2/2$
- Strategic complementarity: $R(a_{-i}) = \theta g(\underline{a}_{-i})$



33

Monotone supermodular games of incomplete information

- G = (N, T, A, u, p)
- $T = T_0 \times T_1 \times ... \times T_n \subseteq \mathbb{R}^M$
- A_i compact sublattice of R^K
- $u_i: A \times T \rightarrow R$
 - u(a,.): $T \rightarrow R$ is measurable
 - □ $u_i(.,t)$: $A \to \mathbb{R}$ is continuous, "bounded", supermodular in a_i , has increasing differences in a
- $p(.|t_i)$ is increasing function of t_i —in the sense of 1st_order stochastic dominance (e.g. p is affiliated).

Theorem (Monotone Equilibrium)

- There exist Bayesian Nash equilibria \overline{s} and \underline{s} such that
 - □ For each BNE s, $\bar{s} \ge s \ge \underline{s}$;
 - \Box Both \bar{s} and \underline{s} are isotone.

MIT OpenCourseWare http://ocw.mit.edu

14.126 Game Theory Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.