Global Games

14.126 Game Theory

Muhamet Yildiz

Road map

1. Theory
2. 2×2 Games (Carlsson and van Damme)
3. Continuum of players (Morris and Shin)
4. General supermodular games (Frankel, Morris, and Pauzner)
5. Applications
6. Currency attacks
7. Bank runs

Motivation

- Outcomes may differ in similar environments.
- This is explained by multiple equilibria (w/strategic complementarity)
- Investment/Development
- Search
- Bank Runs
- Currency attacks
- Electoral competition...
- But with introduction of incomplete information, such games tend to be dominance-solvable

A simple partnership game

θ is common knowledge

$$
\theta<0
$$

		Invest	Not-Invest
Invest	\begin{tabular}{\|c	c	c
\hline			
\end{tabular}	θ, θ	$\theta-1,0$	
Not-Invest	$0, \theta-1$	0,0	

θ is common knowledge

$$
\theta>1
$$

θ is common knowledge

$$
0<\theta<1
$$

Multiple Equilibria!!!

θ is common knowledge

θ is not common knowledge

- θ is uniformly distributed over a large interval
- Each player i gets a signal

$$
x_{i}=\theta+\varepsilon \eta_{i}
$$

- $\left(\eta_{1}, \eta_{2}\right)$ is bounded,
- Independent of θ,
- iid with continuous F (common knowledge),
$\square E\left[\eta_{i}\right]=0$.

Conditional Beliefs given x_{i}

$$
\theta={ }_{d} x_{i}-\varepsilon \eta_{i}
$$

- i.e. $\operatorname{Pr}\left(\theta \leq \underline{\theta} \mid x_{i}\right)=1-F\left(\left(x_{i}-\underline{\theta}\right) / \varepsilon\right)$;

$$
x_{j}={ }_{d} x_{i}+\varepsilon\left(\eta_{j}-\eta_{i}\right)
$$

- $\operatorname{Pr}\left(x_{j} \leq x \mid x_{i}\right)=\operatorname{Pr}\left(\varepsilon\left(\eta_{j}-\eta_{i}\right) \leq x-x_{i}\right)$;
$-F\left(\theta, x_{j} \mid x_{i}\right)$ is decreasing in x_{i}
- $\mathrm{E}\left[\theta \mid x_{i}\right]=x_{i}$

Payoffs given x_{i}

Invest Not-Inv	Invest	Not-Inv	- Invest > Not-Invest $-U_{i}\left(a_{i}, a_{j}, x_{i}\right)$ is supermodular. - Monotone supermodular! - There exist greatest and smallest rationalizable strategies, which are - Bayesian Nash Equilibria - Monotone (isotone)
	x_{i}	$x_{i}-1$	
	0	0	
	Invest	Not-Inv	
Invest	θ	$\theta-1$	
Not-Inv	0	0	

Monotone BNE

- Best reply:

Invest iff $x_{i} \geq \operatorname{Pr}\left(s_{j}=\right.$ Not-Invest $\left.\mid x_{i}\right)$

- Assume $\operatorname{supp}(\theta)=[a, b]$ where $a<0<1<b$.
- $x_{i}<0 \Rightarrow s_{i}\left(x_{i}\right)=$ Not Invest
- $x_{i}>1 \Rightarrow s_{i}\left(x_{i}\right)=$ Invest
- A cutoff x_{i}^{*} s.t.
- $x_{i}<x_{i}^{*} \Rightarrow s_{i}\left(x_{i}\right)=$ Not Invest; $x_{i}>x_{i}^{*} \Rightarrow s_{i}\left(x_{i}\right)=$ Invest;
- Symmetry: $x_{1}{ }^{*}=x_{2}{ }^{*}=x^{*}$
- $x^{*}=\operatorname{Pr}\left(\mathrm{s}_{j}=\right.$ Not-Invest $\left.\mid x^{*}\right)=\operatorname{Pr}\left(x_{j}<x^{*} \mid x_{i}=x^{*}\right)=1 / 2$
- "Unique" BNE, i.e., "dominance-solvable"

Questions

- What is the smallest BNE?
- What is the largest BNE?
- Which strategies are rationalizable?
- Compute directly.
θ is not common knowledge but the noise is very small

It is very likely that

Risk-dominance

- In a 2×2 symmetric game, a strategy is said to be "risk dominant" iff it is a best reply when the other player plays each strategy with equal probabilities.

Invest	Invest	Not-Invest	Invest is RD iff$\begin{aligned} & 0.5 \theta+0.5(\theta-1)>0 \\ & \quad \Leftrightarrow \theta>1 / 2 \end{aligned}$
	θ, θ	$\theta-1,0$	
Not-Invest	$0,0-1$	0,0	
Players play according to risk dominance!!!			

Carlsson \& van Damme

Risk Dominance

- Suppose that (A,A) and
(B,B) are NE.
- (A, A) is risk dominant if

A
B
A B
A

u_{11}, v_{11}	u_{12}, v_{12}
u_{21}, v_{21}	u_{22}, v_{22}

A B
A
B

- (A,A) risk dominant:

$$
g_{1}{ }^{a} g_{2}{ }^{a}>g_{1}{ }^{b} g_{2}{ }^{b}
$$

$-i$ is indifferent against s_{j}; (A,A) risk dominant:

$$
\underline{s}_{1}+\underline{s}_{2}<1
$$

Dominance, Risk-dominance regions

- Dominance region:

$$
D_{i}^{a}=\left\{(u, v) \mid g_{i}^{a}>0, g_{i}^{b}<0\right\}
$$

- Risk-dominance region:

$$
R^{a}=\left\{(u, v) \mid g_{1}{ }^{a}>0 g_{2}{ }^{a}>0 ; g_{1}{ }^{b}, g_{2}{ }^{b}>0 \Rightarrow \underline{s}_{1}+\underline{s}_{2}<1\right\}
$$

Model

- $\Theta \subseteq \mathfrak{R}^{m}$ is open; (u, v) are continuously differentiable functions of $\theta \mathrm{w} /$ bounded derivatives;
- prior on θ has a density h which is strictly positive, continuously differentiable, bounded.
- Each player i observes a signal

$$
x_{i}=\theta+\varepsilon \eta_{i}
$$

- $\left(\eta_{1}, \eta_{2}\right)$ is bounded,
- Independent of θ,
- Admits a continuous density

Theorem

(Risk-dominance v. rationalizability)

- Assume:
- x is on a continuous curve $\mathrm{C} \subseteq \Theta$,
- $(u(c), v(c)) \in R^{a}$ for each $c \in \mathrm{C}$,
- $(u(c), v(c)) \in D^{a}$ for some $c \in C$.
- Then, A is the only rationalizable action at x when ε is small.

"Public" Information

- $\quad \theta \sim N\left(y, \tau^{2}\right)$ and $\varepsilon \eta_{i} \sim N\left(0, \sigma^{2}\right)$
- Given x_{i},

$$
\begin{gathered}
\theta \sim N\left(\mathrm{rx}_{\mathrm{i}}+(1-\mathrm{r}) \mathrm{y}, \sigma^{2} \mathrm{r}\right) \\
\mathrm{x}_{\mathrm{j}} \sim \mathrm{~N}\left(\mathrm{rx}_{\mathrm{i}}+(1-\mathrm{r}) \mathrm{y}, \sigma^{2}(\mathrm{r}+1)\right) \\
\mathrm{r}=\tau^{2} /\left(\sigma^{2}+\tau^{2}\right)
\end{gathered}
$$

- (Monotone supermodularity) monotone symmetric NE w/cutoff x^{c} :

$$
\begin{aligned}
& \qquad \left.r x^{c}+(1-r) y=\operatorname{Pr}\left(x_{j} \leq x^{c} \mid x_{i}=x^{c}\right)=\Phi\left(\frac{(1-r)\left(x^{c}-y\right)}{\sigma \sqrt{r+1}}\right) \right\rvert\,
\end{aligned}
$$

$$
r x^{c}+(1-r) y-\operatorname{Pr}\left(x_{j} \leq x^{c} \mid x_{i}=x^{c}\right)
$$

is increasing in x^{c} whenever zero, i.e.,

$$
\sigma^{2}<2 \pi \tau^{4}(r+1)
$$

Figure 3.1: Parameter Range for Unique Equilibrium

Currency attacks
 Morris \& Shin

Model

- Fundamental: θ in $[0,1]$
- Competitive exchange rate: $f(\theta)$
- f is increasing
- Exchange rate is pegged at $e^{*} \geq f(1)$.
- A continuum of speculators, who either
a Attack, which costs t, or
- Not attack
- Government defends or not
- The exchange rate is e^{*} if defended, $f(\theta)$ otherwise

Speculator's Payoffs

Government's payoffs

- Value of peg = v

Government's strategy

- Government knows α and θ;
- Defends the peg if

$$
v>c(\alpha, \theta)
$$

- Abandons it otherwise.
θ is common knowledge

$$
\theta<\underline{\theta}
$$

θ is common knowledge
$\theta>\bar{\theta}$

θ is common knowledge

$$
\underline{\theta}<\theta<\bar{\theta}
$$

Multiple Equilibria!!!

θ is common knowledge

θ is not common knowledge

- θ is uniformly distributed on $[0,1]$.
- Each speculator i gets a signal

$$
x_{i}=\theta+\eta_{i}
$$

- η_{i} 's are independently and uniformly distributed on $[-\varepsilon, \varepsilon]$ where $\varepsilon>0$ is very small.
- The distribution is common knowledge.

Government's strategy

- Government knows α and θ;
- Defends the peg if

$$
v>c(\alpha, \theta)
$$

- Abandons it otherwise.

Define: $a(\theta)=$ the minimum α for which G abandons the peg

$$
v=c(a(\theta), \theta)
$$

Speculator's payoffs

- $r=$ ratio of speculators who attack
- $\mathrm{u}($ Attack $, r, \theta)=e^{*}-f(\theta)-t$ if $r \geq a(\theta)$ $-t \quad$ otherwise
- $\mathrm{U}($ No Attack, $r, \theta)=0$

Unique Equilibrium

- Equilibrium: Attack iff $x_{i} \leq x^{*}$.
- $r(\theta)=\operatorname{Pr}\left(x \leq x^{*} \mid \theta\right)$
.5- $5\left(\theta^{*}-\mathrm{x}^{*}\right) / \varepsilon=\mathrm{a}\left(\theta^{*}\right)$

$$
x^{*}=\theta^{*}-\varepsilon\left[1-2 \mathrm{a}\left(\theta^{*}\right)\right]
$$

"Risk dominance"

- Suppose all strategies are equally likely
- r is uniformly distributed on $[0,1]$
- Expected payoff from Attack

$$
(1-a(\theta))\left(e^{*}-f(\theta)\right)-t
$$

- Attack is "risk dominant" iff

$$
(1-a(\theta))\left(e^{*}-f(\theta)\right)>t
$$

- Cutoff value θ^{*} :

$$
\left(1-a\left(\theta^{*}\right)\right)\left(e^{*}-f\left(\theta^{*}\right)\right)=t
$$

θ is not common knowledge but the noise is very small

It is very likely that

Comparative statics - t

- Cutoff value θ^{*} :
$\left(1-\mathrm{a}\left(\theta^{*}\right)\right)\left(\mathrm{e}^{*}-\mathrm{f}\left(\theta^{*}\right)\right)=\mathrm{t}$
- LHS is decreasing in θ^{*}.

If transaction cost t increases, attack becomes less likely!

Comparative statics $-e^{*}$

- Cutoff value θ^{*} :
$\left(1-\mathrm{a}\left(\theta^{*}\right)\right)\left(\mathrm{e}^{*}-\mathrm{f}\left(\theta^{*}\right)\right)=\mathrm{t}$
- LHS is decreasing in θ^{*}
- and increasing in e^{*}

> If e* increases, attack becomes
more likely!

Comparative statics - c

- Let $\mathrm{c}(\alpha, \theta)=\gamma \mathrm{C}(\alpha, \theta)$
- Cutoff value θ^{*} :

$$
\left(1-a\left(\theta^{*}\right)\right)\left(e^{\star}-f\left(\theta^{*}\right)\right)=t
$$

- LHS is decreasing in θ^{*}
- and decreasing in a
- i.e., increasing in γ

If γ increases, attack becomes
 more likely!

Bank Runs

Model

- Dates: 0,1,2
- Each depositor has 1 unit good
- A bank invests either in
- Cash with return 1 at $t=1$; or in
- Illiquid asset (IA) with return $R>1$ at $t=2$.
- Consumption: $\mathrm{c}_{1}, \mathrm{C}_{2}$
- Two types of depositor
- Impatient: $\log \left(c_{1}\right)$; measure λ
- Patient: $\log \left(\mathrm{c}_{1}+\mathrm{c}_{2}\right)$; measure $1-\lambda$
- If proportion of L invested in IA withdrawn at $t=1$, the return is $\mathrm{Re}^{-\mathrm{L}}$.

Assume: λ is in cash.

Actions

- An impatient consumer withdraws at $t=1$.
- A (patient) consumer either withdraws at $t=1$ and gets 1 unit of cash, with payoff

$$
u(1)=\log (1)=0,
$$

- or withdraws at $t=2$ and gets $\mathrm{Re}^{-\mathrm{L}}$ where L is the ratio of patient consumers who withdraws at $\mathrm{t}=1$.
- Write $r=\log (R)$.
- The payoff from late withdrawal is

$$
u(2)=r-L \text {. }
$$

Complete Information

- Multiple equilibria:
- All patients consumers withdraw at $t=2$, where $\mathrm{L}=0$.
- All patients consumers withdraw at $t=1$, where $L=1$.

Incomplete Information

- r is distributed with $N(\underline{r}, 1 / \alpha)$, where

$$
0<\underline{r}<1
$$

- Each depositor i gets a signal

$$
x_{i}=r+\varepsilon_{i}
$$

- ε_{i} iid with $\mathrm{N}(0,1 / \beta)$.
- The distribution is common knowledge.

This is identical to the partnership game!! (when $\beta \rightarrow \infty$)

Theorem

- Write $\rho=(\alpha \underline{\underline{r}}+\beta \mathbf{x}) /(\alpha+\beta)$ for the expected value of r given x.
- Write $\gamma=\alpha^{2}(\alpha+\beta) /\left(\alpha \beta+2 \beta^{2}\right)$.
- If $\gamma<2 \pi$, there is a unique equilibrium; a patient depositor withdraws at $\mathrm{t}=1$ iff $\rho<\rho^{*}$, where

$$
\rho^{*}=\Phi\left(\gamma^{.5}\left(\rho^{*}-\underline{r}\right)\right)
$$

General Supermodular Global Games

 Frankel, Morris, and Pauzner
Model

- $N=\{1, \ldots, n\}$ players
- $A_{i} \subseteq[0,1]$,
- countable union of closed intervals
- $0,1 \in A_{i}$
- Uncertain payoffs $u_{i}\left(a_{i j} a_{i j}, \theta\right)$ - continuous with bounded derivatives
- 1-dimensional payoff uncertainty: $\theta \in \mathrm{R}$
- Each player i observes a signal

$$
x_{i}=\theta+\varepsilon \eta_{i}
$$

- $\left(\theta, \eta_{1}, \eta_{2}\right)$ are independent with atomless densities
- $\left(\eta_{1}, \eta_{2}\right)$ bounded

Main Assumptions

Let $\mathrm{Du}_{i}\left(\mathrm{a}_{j}, \mathrm{a}^{\prime} ; \mathrm{a}_{-i}, \theta\right)=u_{i}\left(\mathrm{a}_{i}, \mathrm{a}_{-i}, \theta\right)-u_{i}\left(\mathrm{a}^{\prime} ; \mathrm{a}_{-i}, \theta\right)$

- Strategic complementarities: $a_{i} \geq a_{i}^{\prime} \& a_{-i} \geq a_{-i}^{\prime}$ $\Rightarrow D u_{i}\left(a_{i j}, a_{i}^{\prime}, a_{-i}, \theta\right) \geq D u_{i}\left(a_{i j}, a_{i j}^{\prime}, a_{-i}^{\prime}, \theta\right)$
- Dominance regions:
- 0 is dominant when θ is very small
- 1 is dominant when θ is very large
- State monotonicity: outside dominance regions, $\exists K>0: \forall a_{i} \geq a_{i}^{\prime} \forall \theta \geq \theta^{\prime}$,
$\operatorname{Du} u_{i}\left(a_{i}, a_{i}^{\prime}, a_{-i}, \theta\right)-D u_{i}\left(a_{i}, a_{i}^{\prime}, a_{-i}, \theta^{\prime}\right) \geq K\left(a_{i}-a_{i}^{\prime}\right)\left(\theta-\theta^{\prime}\right)$

Theorem (Limit Uniqueness)

- In the limit $\varepsilon \rightarrow 0$, there is a "unique" rationalizable strategy, which is increasing.
- i.e., there exists an increasing pure strategy profile s^{*} such that if for each $\varepsilon>0, s^{\varepsilon}$ is rationalizable at ε, then almost everywhere

$$
\operatorname{Lim}_{\varepsilon \rightarrow 0} S_{i}^{\varepsilon}\left(X_{i}\right)=s_{i}^{*}\left(X_{i}\right) .
$$

Limit Solution

- ($\left.S_{1}{ }^{*}(x), S_{2}{ }^{*}(x)\right)$ is a Nash equilibrium of the complete information game in which it is common knowledge that $\theta=x$.

Noise dependence

- There exists a game satisfying the FPM assumptions in which for different noise distributions, different equilibria are selected in the limit as the signal errors vanish.
- There are conditions under which s* is independent of the noise distributions.

MIT OpenCourseWare
http://ocw.mit.edu

14.126 Game Theory

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

