14.127 Behavioral Economics. Lecture 10

Xavier Gabaix

April 15, 2004

1 Hyperbolic discounting

- Luttmer and Mariotti (JPE 2003) hyperbolics does not make much difference/improvement over exponential discounting.
- Gruber and Koszegi - rational cigarettes behavior: exponential and hyperbolics have similar consumption behavior
- The main difference between exponentials and hyperbolics is the predilection of hyperbolics to hoard illiquid assets. This is corroborated by evidence.

2 Gul-Pesendorfer Self-Control and the Theory of Consumption

$$
W\left(\left\{c_{t}, m_{t}\right\}\right)=\sum_{t \geq 0} \delta^{t}\left(u\left(c_{t}\right)+v\left(c_{t}\right)-v\left(m_{t}\right)\right)
$$

where c_{t} is the actual consumption and m_{t} is the maximum possible consumption.

- Assumptions: $u+v$ concave, v convex
- Big gain: no dynamic inconsistency
- People don't like dynamic inconsistency because of:
- technical difficulties involved
- their philosophical stance
- problems with doing welfare analysis

2.1 Preference reversals

- Start with (c, c, c, \ldots)
- At $t=1$ you can choose between α at τ or β at $\tau+1$ where $\beta>\alpha$.
- Does the agent prefer β ?
- If $\tau=1$ then agent chooses β iff

$$
\begin{aligned}
& \delta(u(c)+v(c)-v(c+\alpha))+\delta^{2}(u(c+\beta)+v(c+\beta)-v(c+\beta)) \\
& \geq \delta(u(c+\alpha)+v(c+\alpha)-v(c+\alpha))+\delta^{2}(u(c)+v(c)-v(c+\beta))
\end{aligned}
$$

- If I could not commit to the plan at $\tau=2,3, \ldots$ than the condition is the same except for the multiplicative factor $\delta^{\tau-1}$.
- If I can commit then there will be no temptation and the condition is

$$
\delta^{\tau} u(c)+\delta^{\tau+1} u(c+\beta) \geq \delta^{\tau} u(c+\alpha)+\delta^{\tau+1} u(c)
$$

- Now, if I can commit to the plan at $t=1$ then there might be a preference reversal (we have three free parameters $v(c+\alpha), v(c+\beta), v(c)$ to fit two inequalities).

2.2 Time preferences and steady state

- Euler equation
- If I
* increase consumption from c_{t} to $c_{t}+d \varepsilon$
* and offset with decrease from c_{t+1} to $c_{t+1}-(1+r) d \varepsilon$
- then
* m_{t+1} also decreases by $(1+r) d \varepsilon$
* and I gain

$$
\frac{\partial V}{\partial \varepsilon}=u^{\prime}\left(c_{t}\right)+v^{\prime}\left(c_{t}\right)+\delta\left(-(1+r) u^{\prime}\left(c_{t+1}\right)-(1+r) v^{\prime}\left(c_{t+1}\right)+(1+\right.
$$

- Thus $\frac{\partial V}{\partial \varepsilon}=0$ gives

$$
1+r=\frac{u^{\prime}\left(c_{t}\right)+v^{\prime}\left(c_{t}\right)}{u^{\prime}\left(c_{t+1}\right)+v^{\prime}\left(c_{t+1}\right)-v^{\prime}\left(m_{t+1}\right)} \frac{1}{\delta}
$$

- Take an economy with different types $(u, \lambda ; v, \delta)_{i=1, \ldots, n}$ where λv is now temptation.
- Total endowment $w=\sum_{i=1}^{n} c_{i t}$.
- Take $u(c)=\ln c$ and $v(c)=c$
- We get

$$
1+r_{t+1}=\frac{\frac{1}{c_{i t}}+\lambda_{i}}{\frac{1}{c_{i t+1}}+\lambda_{i}-\lambda_{i}} \frac{1}{\delta}
$$

- In steady state $c_{i t}=c_{i}$ and $r_{t}=r$,and

$$
1+r=\frac{\frac{1}{c_{i}}+\lambda_{i}}{\frac{1}{c_{i}}+\lambda_{i}-\lambda_{i}} \frac{1}{\delta}
$$

hence

$$
c_{i}=\frac{\delta(1+r)-1}{\lambda_{i}}
$$

- Call $\gamma_{i}=\frac{1}{\lambda_{i}}$. Then $c_{i}=[\delta(1+r)-1] \gamma_{i}=\alpha \gamma_{i}$ for appropriate α
- Then $w=\sum c_{i}=\alpha\left(\sum \gamma_{i}\right)$
- Hence

$$
c_{i}=\frac{\gamma_{i}}{\sum \gamma_{i}} w
$$

- Gul-Pesendorfer is very unexplored model, and many people like it more than hyperbolics. Does it lead to different results than hyperbolics? It's not well understood.
- Frederick, Loewenstein, and O'Donoghue (JEL 2002) - review of time discounting.

3 Macro

3.1 Inflation

3.1.1 Nominal illusion

- Fact. Most people don't master the difference between nominal and real quantities
- Modigliani-Cohn hypothesis. Impact of nominal illusions on stock market prices
- Take a rational model when dividend is discounted at rate $r+\pi$ (where r is interest rate and π is risk premium).
- Gordon formula

$$
\frac{p}{D}=\frac{1}{r+\pi-g}
$$

where g is rate of growth of dividends. Take $g=0$.

- If people have nominal illusions then they compare dividend yield $\frac{D}{p}$ to the nominal interest rate $r+i$ (where i is inflation). [note that bond yield usually includes inflation]
- If the representative agent is victim of this illusion, then the required premium on stocks will be $r+\pi=r+i+\beta$ where β is some rule of thumb risk premium
- So an econometrician measures $\pi=i+\beta$ and obtain risk premium/excess return that is increasing with inflation.
- If all agents are rational the measured π is independent of inflation.
- If some agents are boundedly rational then you expect

$$
\pi=\gamma i+\alpha
$$

for some $\gamma \in(0,1)$.

- Thus stock market is down when inflation is high.
- Other explanations: high inflation may mean other things going badly in the economy.
- Does the Modigliani-Cohn hypothesis hold?
- Evidence is inconclusive
- The latest attempt (Campbell and Vuolteenaho 2003) suggest that the MC hypothesis does hold.
- Irving Fisher effects?
- If the Fisher hypothesis holds then nominal interest rates $R_{t}=r+$ i_{t} for some constant real productivity r and the real interest rate is independent of inflation.
- In a very behavioral world with nominal illusion we can have 0 coefficient on inflation, or

$$
R_{t}=\alpha+\gamma i_{t}
$$

and the real interest rate equals

$$
r_{t}=\alpha-(1-\gamma) i_{t}
$$

- Thus r_{t} is low when inflation is high.
- Empirically, mixed evidence.

3.1.2 Other behavioral dimensions of inflation

- Aversion to nominal wage cuts (Akerlof, Dickens, and Perry, Brookings 1996).
- They show a histogram of nominal wage changes: big mass at 0\%, 1\%, 2%, etc. You also have some firms at -4% or -5% but you very little mass immediately below 0 . Thus, firms really don't like small nominal wage cuts.
- This is an argument against 0 inflation. Unemployment rate is will be higher at 0% inflation, as we hit the constraint of (almost) no nominal wage cuts.
- There is also some evidence: Switzerland used to have 0% inflation and many things were going badly.
- Akerlof, Dickens, and Perry, Brookings 1996 model that, and provide evidence.
- Real costs of inflation, for lowish inflation (between 0 and 10\%)
- Many of the traditional costs are likely to be small:
- Allais Baumol Tobin shoe-leather cost of going to bank: They are likely to be small. of Calibration by Lucas (Econometrica, 2000).
- Menu cost of changing prices and producing new menus.
- Price distorsions induced by inflation volatility (e.g. Bénabou)
- Some costs due to bounded rationality are likely to be bigger:
- Thinking costs: It's a hassle to have to handle inflation all the time.
- If people are victims of money illusion, then very important prices are distored (e.g. stocks: Modigliani Cohn, and bonds: if the Fisher hypothesis doesn't hold)
- For very low inflation ($<1 \%$): The aversion to nominal wage cut becomes a very big issue, and probably the major cost of inflation.

