14.127 Behavioral Economics (Lecture 2)

Xavier Gabaix

February 12, 2004

0.1 Cumulative PT

Remind from last lecture: for continuous gambles with distribution f(x)
EU gives:

$$V = \int_{-\infty}^{+\infty} u(x) f(x) dx,$$

PT gives:

$$V = \int_0^{+\infty} u(x) f(x) \pi' (P(g \ge x)) dx$$
$$+ \int_{-\infty}^0 u(x) f(x) \pi' (P(g \le x)) dx$$

• Alternatively, we can write it as Riemann-Stieltjes integral

$$V = -\int_0^{+\infty} u(x) d\pi (1 - P(g < x))$$
$$+ \int_{-\infty}^0 u(x) d\pi (P(g \le x))$$

• This simplifies to PT for two outcome gambles. Indeed, it is selfevident in the Riemann-Stieltjes form.

1 The endowment effect – a consequence of PT

- Lab experiment, Kahneman, Knetsch, Thaler, JPE 1990.
 - Half of the subjects receives an MIT apple, and the other half receives \$10.
 - Then willingness to pay WTP for the apple is elicited from subjects with money, and willingness to accept WTA is elicited from subjects with mugs.
- In EU we have WTP = WTA (modulo wealth effects, which are small)

• In simplified (linear) PT value getting an apple and lose x is

$$V = u$$
 (apple) + $u(-x) = A - \lambda x$

(note—there are mental accounting ideas plugged in here that is we process apple and money on separate accounts).

• Thus, in PT, one accepts when

$$A - \lambda x \ge \mathbf{0}$$

so that

$$WTA = \frac{A}{\lambda}.$$

• In simplified (linear) PT value losing an apple and gaining x is

$$V = u (-apple) + u (x) = -\lambda A + x$$

(note, once more time we process apple and money on separate accounts).

• Thus, in PT, one pays when

$$-\lambda A + x \ge \mathbf{0}$$

so that

$$WTP = \lambda A.$$

• Thus, PT gives stability to humane life, a status quo bias.

1.1 Endowment effect experiment with mugs

- Classroom of one hundred. Fifty get the mug, fifty get \$20.
- One does a call auction in which people can trade mugs.
- Trading volume "rational" expectation would be that the average trading volume should be $\frac{1}{2}50 = 25$. Everybody has a valuation, and probability that someone with valuation higher than the market price is $\frac{1}{2}$.
- If WTP<WTA then the trading volume is lower than $\frac{1}{2}$.
- In experiments, the trading volume is about $\frac{1}{4}$.

1.2 Open questions with PT

1.2.1 Open question 1: Narrow framing

- N independent gambles: $g_1, ..., g_N$
- For each i do you accept g_i or not?
- In EU call $a_i = 1$ if accept g_i and $a_i = 0$ otherwise. Your total wealth is

$$W_0 + a_1 g_1 + \ldots + a_N g_N$$

and you maximize

$$\max_{a_1,...,a_N} Eu \left(W_0 + a_1 g_1 + ... + a_N g_N \right).$$

• In PT we have at least two possibilities

- Separation:
$$a_i = 1$$
 iff $V^{PT}(g_i)$.

- Integrative: solve $\max_{a_1,\ldots,a_N} V^{PT} (a_1g_1 + \ldots + a_Ng_N)$.
- Separation is more popular, but unlikely in for example in stock market, or venture capital work.
- KT don't tell whether integration or separation will be chosen. That is one of the reasons PT has not been used much in micro or macro.
- How to fix this problem?

- Integration as far as possible subject to computational costs.
- Natural horizon between now and when I need to retire.
- Do what makes me happier, max (separation, integration). That would be an appealing general way to solve the problem.
 - * Problem, each everyday gamble is small against the background of all other gambles of life.
 - * So, an EU maximizer would be locally risk neutral.
 - * And also a PT maximizer would be locally risk neutral whenever he or she accpets integrationist frame.

1.2.2 Horizon problem — a particular case of the framing problem

- Stock market.
 - Yearly values

standard deviation $\sigma T^{\frac{1}{2}} = 20\%$ per year where $T \simeq 250$ days,

mean
$$\mu T = 6\%$$
 per year.

- Daily values

$$\sigma = \frac{20\%}{250^{\frac{1}{2}}} \\ \mu = \frac{6\%}{T}$$

- Assume that a PT agent follows the rule: "accept if $\frac{\text{Risk premium}}{\text{St. dev.}} > k$ " (PS1 asks to show existence of such an PT agent).
- So, a PT agent with yearly horizon invests if

$$\frac{6\%}{20\%} > k^*$$

- A PT agent with daily horizon invests if

$$\frac{\mu}{\sigma} = \frac{.024}{1.3} \simeq .01 << k^*$$

- This is not even a debated issue, because people don't even know how to start that discussion
- Kahneman says in his Nobel lecture that people use "accessible" horizons.

- * E.g. in stock market 1 year is very accessible, because mutual funds and others use it in their prospectuses.
- * Other alternatives time to retirement or time to a big purchase. or "TV every day".
- In practice, for example Barberis, Huang, and Santos QJE 2001 postulate an exogenous horizon.

- **1.2.3** Open question 2: Risk seeking
 - Take stock market with return $R = \mu + \sigma n$ with $n \sim N(0, 1)$.
 - Invest proportion θ in stock and 1θ in a riskless bond with return 0.
 - Total return is

$$\theta R + (1 - \theta) \mathbf{0} = \theta (\mu + \sigma n).$$

• Let's use PT with $\pi(p) = p$. The PT value is

$$V = \int_{-\infty}^{+\infty} u \left(\theta \left(\mu + \sigma n\right)\right) f(n) dn$$

- Set $u(x) = x^{\alpha}$ for positive x and $-\lambda |x|^{\alpha}$ for negative x.
- $\bullet \ \mbox{Using homothecity of } u$ we get

$$V = \int_{-\infty}^{+\infty} |\theta|^{\alpha} u (\mu + \sigma n) f(n) dn$$
$$= |\theta|^{\alpha} \int_{-\infty}^{+\infty} u (\mu + \sigma n) f(n) dn$$

- Thus optimal θ to equals 0 or $+\infty$ depending on sign of the last integral.
- Why this problem? It comes because we don't have concave objective function. Without concavity it is easy to have those bang-bang solutions.

• One solution to this problem is that people maximize $V^{EU} + V^{PT}$.

1.2.4 Open question 3: Reference point

Implicitly we take the reference point to be wealth at t = 0. Gamble is W₀ + g and

$$V^{PT} = V^{PT} \left(W_0 + g - R \right)$$

- But how R_t evolves in time?
- In practice, Barberis, Huang, and Santos QJE 2001 (the most courageous paper) postulate some ad hoc exogenous process. People gave them the benefit of a doubt.

1.2.5 Open question 4: Dynamic inconsistency

- Take a stock over a year horizon. Invest 70% on Jan 1st, 2001.
- It's Dec 1, 2001. Should I stay invested?
- If the new horizon is now one month, I may prefer to disinvest, even though on Jan 1, 2001, I wanted to keep for the entire year.
- By backward induction, Jan 1 guy should disinvest!

1.2.6 Open question 5: Doing welfare is hard

- Why? Because it depends on the frame.
- Take T = 250 days of stock returns $g_i \sim N(\mu, \sigma^2)$. Integrated $V^{PT}(\sum g_i) = V^I$ and separated $V^{PT} = V^S$.
- The cost of the business cycle (Lucas). Suppose *c* =average monthly consumption. Assume simple consumption shocks:

$$c_t = c + \varepsilon_t$$

with normal iid ε_t .

• What is PT reference point? Take $R_t = c = 0$.

• With PT integrated over one year

$$V^{PT}\left(\sum \varepsilon_t\right) = V^{PT}\left(12^{\frac{1}{2}}\sigma_{\varepsilon}n\right) = \left(12^{\frac{1}{2}}\sigma_{\varepsilon}\right)^{\alpha}V^{PT}\left(n\right) < 0.$$

• With segregated PT

$$V^{PT} = 12\sigma_{\varepsilon}^{\alpha}V^{PT}(n)$$

• Which frame is better?

1.3 Next time

- Lucas calculation of costs of business cycle. In practice people care about business cycles, and election are decided on those counts.
- Problem Set next time. One question try to circumvent one of the problems.
- Readings on heuristics and biases, the Science 74 KT article and Camerer's paper from the syllabus.