14.127 Lecture 5

Xavier Gabaix

March 4, 2004

0.1 Welfare and noise. A compliment

- Two firms produce roughly identical goods
- Demand of firm 1 is

$$
D_{1}=P\left(q-p_{1}+\sigma \varepsilon_{1}>q-p_{2}+\sigma \varepsilon_{2}\right)
$$

where $\varepsilon_{1}, \varepsilon_{2}$ are iid $N(0,1)$.

- Thus

$$
\begin{aligned}
D_{1} & =P\left(p_{2}-p_{1}>\sigma\left(\varepsilon_{1}-\varepsilon_{2}\right)\right)=P\left(p_{2}-p_{1}>\sigma \sqrt{2} \eta\right) \\
& =P\left(\frac{p_{2}-p_{1}}{\sigma \sqrt{2}}>\eta\right)=\bar{\Phi}\left(\frac{p_{2}-p_{1}}{\sigma \sqrt{2}}\right)
\end{aligned}
$$

where η is $N(0,1)$ and $\bar{\Phi}=1-\Phi$, with Φ cdf of $N(0,1)$

- Unlike in $\varepsilon \equiv 0$ case, here the demand is not dramatically elastic
- Slope of demand at the symmetric equilibrium $p_{1}=p_{2}$

$$
\begin{aligned}
-\frac{\partial}{\partial p_{1}} D_{1} & =-\frac{\partial}{\partial p_{1}} \bar{\Phi}\left(\frac{p_{2}-p_{1}}{\sigma \sqrt{2}}\right)=\phi\left(\frac{p_{2}-p_{1}}{\sigma \sqrt{2}}\right) \frac{1}{\sigma \sqrt{2}} \\
& =\phi(0) \frac{1}{\sigma \sqrt{2}}
\end{aligned}
$$

and "modified" elasticity

$$
\eta=-\frac{1}{D_{1}} \frac{\partial}{\partial p_{1}} D_{1}=\phi(0) \frac{1}{\sigma \sqrt{2}}=\frac{\sqrt{\pi}}{\sigma}
$$

because $D_{1}=\frac{1}{2}$.

- When $\sigma \rightarrow 0$ then $\eta \rightarrow \infty$. Even though the "true" elasticity is ∞ the measured elasticity is lower $\eta<\eta^{\text {true }}$.
- Open question: how to correct that bias?

0.2 How to measure the quantity of noise σ ?

- - Give people n mutual funds and ask them to pick their preferred and next preferred fund.
- Assume that all those funds have the same value $q_{A}=q_{B}$
- People do

$$
\max q_{i}-p_{i}+\sigma \varepsilon_{i}=s_{i}
$$

- Call A - the best fund, B - the second best fund, $s_{A} \geq s_{B} \geq$ all other funds.
- Increase p_{A} by Δp. At some point the consumer is indifferent between A and B.

$$
q_{A}-p_{A}+\sigma \varepsilon_{A}-\Delta p=q_{B}-p_{B}+\sigma \varepsilon_{B}
$$

- If $p_{A}=p_{B}$ then

$$
\Delta p=\sigma\left(\varepsilon_{A}-\varepsilon_{B}\right)
$$

or

$$
\Delta p=\sigma\left(\varepsilon_{(1: n)}-\varepsilon_{(2: n)}\right)
$$

- Proposition. For large n

$$
\Delta p=B_{n} \sigma
$$

where B_{n} is the parameter of Gumbel attraction,

$$
B_{n}=\frac{1}{n f\left(\bar{F}\left(\frac{1}{n}\right)\right)}
$$

0.3 Could the fees be due to search costs?

- Ali Hortacsu and Chad Syverson, QJE 2004, forthcoming.
- Suppose you have $x=\$ 200,000$ and you keep it for 10 years.
- You pay $1.5 \% /$ year and thus lose $200,000 \times 1.5 \%=3,000$ a year.
- Competing explanation - people don't know that two index mutual fund are the same thing.

0.4 Open questions

- What are the regulatory implications of consumer confusion?
- Where does confusion $\sigma \varepsilon_{i}$ comes from? For instance, provide a cognitive model that gives a microfoundation for this "noise"
- Find a model that predicts the level of the confusion σ ? e.g., in the mutual fund market, give a model that predicts the reasonable order of magnitude.
- Find a model that predicts how σ varies with experience?
- How do firms increase/create confusion σ ?
- Empirically, how could we distinguish whether profits come from true product differentiation, search costs, or confusion noise?
- Devise a novel empirical strategy to measure an effect related to the material of lectures 3 to 5 .

0.5 Competition and confusion

- Proposition. Firms have an incentive to increase the confusion. The effect is stronger, the stronger is competition.
- Example - cell phone pricing.
- Symmetry of firms is important here. If there is a firm that is much better than others, then it wants to have very low σ to signal this.
- Proof.
- Consider n identical firms and symmetric equilibria.

$$
\begin{aligned}
D_{1} & =P\left(q-p_{1}+\sigma_{1} \varepsilon_{1}+V\left(\sigma_{1}\right)>\max q-p_{i}+\sigma_{i} \varepsilon_{i}+V\left(\sigma_{i}\right)\right) \\
& =P\left(q-p_{1}+\sigma_{1} \varepsilon_{1}+V\left(\sigma_{1}\right)>\max q-p^{*}+\sigma^{*} \varepsilon_{i} V\left(\sigma^{*}\right)\right)
\end{aligned}
$$

where $V\left(\sigma_{i}\right)$ is the utility of complexity σ_{i} (equated with confusion).

- Denote $M_{n-1}=\max _{i=2, \ldots, n} \varepsilon_{i}$. In equilibrium

$$
\begin{aligned}
D_{1} & =P\left(p^{*}-p_{1}+\sigma_{1} \varepsilon_{1}+V\left(\sigma_{1}\right)-V\left(\sigma^{*}\right)>\sigma^{*} M_{n-1}\right) \\
& =P\left(\varepsilon_{1}>\frac{\sigma^{*}}{\sigma_{1}} M_{n-1}-\frac{p^{*}-p_{1}+V\left(\sigma_{1}\right)-V\left(\sigma^{*}\right)}{\sigma_{1}}\right)=E \bar{F}(c)
\end{aligned}
$$

- At the equilibrium, $p_{1}=p^{*}, \sigma_{1}=\sigma^{*}$, and by symmetry

$$
D_{1}=\frac{1}{n}
$$

- Let us check it to develop flexibility with tricks of the trade. First note that

$$
\begin{aligned}
P\left(M_{n-1}<x\right) & =P\left((\forall i) \varepsilon_{i}<x\right) \\
& =F(x)^{n-1}
\end{aligned}
$$

* Density $g_{n-1}(x)=G_{n-1}^{\prime}(x)=(n-1) F^{n-2}(x) f(x)$.
* Now

$$
\begin{aligned}
1-D_{1} & =E\left(1-\bar{F}\left(M_{n-1}\right)\right)=E\left(F\left(M_{n-1}\right)\right)=\int F(x) g_{n-1}(x) d x \\
& =\int F(x)(n-1) F^{n-2}(x) f(x) d x=\int(n-1) F^{n-1}(x) f(x \\
& =(n-1)\left[\frac{F^{n}(x)}{n}\right]_{-\infty}^{+\infty}=\frac{n-1}{n}=1-\frac{1}{n}
\end{aligned}
$$

* Thus $D_{1}=\frac{1}{n}$.
- Heuristic remark. $E\left(\bar{F}\left(M_{n-1}\right)\right)=\frac{1}{n}$. Hence $M_{n}=A_{n}+B_{n} \eta$, where $A_{n} \gg B_{n}$ are Gumbel attraction constants. Thus $M_{n} \simeq A_{n}$. So,

$$
M_{n} \simeq \bar{F}\left(\frac{1}{n}\right) \simeq A_{n}
$$

- The profit $\pi_{1}=\max _{p_{1}, \sigma_{1}} E \bar{F}\left(\frac{\sigma^{*}}{\sigma_{1}} M_{n-1}-\frac{p^{*}-p_{1}+V\left(\sigma_{1}\right)-V\left(\sigma^{*}\right)}{\sigma_{1}}\right)\left(p_{1}-c_{1}\right)$
- From FOC and envelope theorem

$$
0=\frac{d}{d \sigma_{1}} \pi_{1}=\left(p_{1}-c_{1}\right) \frac{\partial}{\partial \sigma_{1}} D_{1}
$$

* Note that

$$
\frac{\partial}{\partial \sigma_{1}} D_{1}=E\left(-f\left(c_{n}\right)\left(-\frac{\sigma^{*} M_{n-1}}{\sigma_{1}^{2}}-\frac{-\left(p^{*}-p_{1}+V\left(\sigma_{1}\right)-V\left(\sigma^{*}\right)\right)}{\sigma_{1}^{2}}+\right.\right.
$$

* In equilibrium, $c_{n}=M_{n-1}$, hence

$$
\begin{aligned}
0 & =\frac{\partial}{\partial \sigma_{1}} D_{1}=E\left(-f\left(M_{n-1}\right)\left(-\frac{M_{n-1}}{\sigma^{*}}-\frac{V^{\prime}\left(\sigma_{1}\right)}{\sigma^{*}}\right)\right) \\
& =E\left(f\left(M_{n-1}\right) \frac{M_{n-1}}{\sigma^{*}}\right)+E\left(f\left(M_{n-1}\right) \frac{V^{\prime}\left(\sigma_{1}\right)}{\sigma^{*}}\right)
\end{aligned}
$$

- Hence

$$
V^{\prime}\left(\sigma_{1}\right)=-\frac{E\left(f\left(M_{n-1}\right) M_{n-1}\right)}{E f\left(M_{n-1}\right)} \equiv-d_{n}
$$

- Consider some simple cases
- Uniform distribution $d_{n}=1-\frac{2}{n}$
- Gumbel $d_{n}=\ln n+A$
- Gaussian $d_{n} \sim \sqrt{\ln n}$
- In those cases, $V^{\prime}\left(\sigma_{1}\right)<0$.
- Thus we have excess complexity.
- What happens as competition grows while $n \rightarrow \infty$?
- Take the utility of noise to be $V(\sigma)=1-\frac{1}{2 \chi}\left(\sigma-\sigma^{* *}\right)^{2}$.
- Then $V^{\prime}(\sigma)=\frac{-1}{\chi}\left(\sigma-\sigma^{* *}\right)=-d_{n}$, and consequently

$$
\sigma=\sigma^{* *}+\chi d_{n}
$$

- Hence, if competition grows, the problem gets exarcerbated.

0.5.1 Open question. The market for advice works very badly. Why?

- - The fund manager wants to sell their own funds.
- Advisor charges you 1\% per year for advice: he gives you stories each month that suggest some kind of trade. Otherwise, he could lose client.

1 Marketing - Introduction

- Why high prices of add-ons and low prices of printers or cars?
- Often the high add-ons fees are paid by the poor not rich who might be argued have low marginal value of money, e.g. use of credit card to facilitate transactions.
- Many goods have "shrouded attributes" that some people don't anticipate when deciding on a purchase.
- Consider buying a printer.
- Some consumers only look at printer prices.
- They don't look up the cost of cartridges.
- Shrouded add-ons will have large mark-ups.
- Even in competitive markets.
- Even when demand is price-elastic.
- Even when advertising is free.

2 Shrouded attributes

- Consider a bank that sells two kinds of services.
- For price p a consumer can open an account.
- If consumer violates minimum she pays fee \widehat{p}.
- WLOG assume that the true cost to the bank is zero.
- Consumer benefits V from violating the minimum.
- Consumer alternatively may reduce expenditure to generate liquidity V.

Do not violate minimum Violate minimum
Spend normally
Spend less
$V-e>0$

$$
\begin{gathered}
V-\widehat{p} \\
V-e-\widehat{p}
\end{gathered}
$$

2.1 Sophisticated consumer

- Sophisticates anticipate the fee \widehat{p}.
- They choose to spend less, with payoff $V-e$
- ...or to violate the minimum, with payoff $V-\widehat{p}$

2.2 Naive consumer

- Naive consumers do not fully anticipate the fee \widehat{p}.
- Naive consumers may completely overlook the aftermarket or they may mistakenly believe that $\widehat{p}<e$.
- Naive consumers will not spend at a reduced rate.
- Naive consumer must choose between foregoing payoff V or paying fee \widehat{p}.

2.3 Summary of the model

- Sophisticates will buy the add-on iff $V-\widehat{p} \geq V-e$.
- Naives will buy the add-on iff $V-\widehat{p} \geq 0$.
- $D\left(x_{i}\right)$ is the probability that a consumer opens an account at bank i.
- For sophisticated consumer

$$
\begin{aligned}
D_{i} & =P\left(q-p_{i}+\max \left(V-e, V-\widehat{p}_{i}\right)+\sigma \varepsilon_{i}>q-p^{*}+\max (V-e, V-\widehat{p}\right. \\
& =P\left(\sigma \varepsilon_{i}+x>\sigma \max _{j \neq i} \varepsilon_{j}\right)
\end{aligned}
$$

- Let α - fraction of rational (sophisticated) consumers, $1-\alpha$ - fraction of irrational (naive) consumers
- Profit earned from rational consumers

$$
\pi=\alpha\left(p+\widehat{p} 1_{\widehat{p} \leq e}\right) D\left(-p+\max (V-e, V-\widehat{p})+p^{*}-\max \left(V-e, V-p^{*}\right.\right.
$$

- Profit earned on irrational consumers

$$
(1-\alpha)\left(p+\widehat{p} 1_{\widehat{p} \leq V}\right) D\left(-p+p^{*}\right)
$$

Proposition. Call $\alpha^{\dagger}=1-\frac{e}{V}$ and $\mu=\frac{D(0)}{D^{\prime}(0)}$.

- If $\alpha<\alpha^{\dagger}$,equilibrium prices are

$$
\begin{aligned}
& p=-(1-\alpha) V+\mu \\
& \widehat{p}=V
\end{aligned}
$$

and only naive agents consume the add-on.

- If $\alpha \geq \alpha^{\dagger}$, prices are

$$
\begin{aligned}
& p=-e+\mu \\
& \widehat{p}=e
\end{aligned}
$$

and all agents consume the add-on.

Corollary. If $\alpha<\alpha^{\dagger}$, then the equilibrium profits equal

$$
\begin{aligned}
\pi & =\alpha p D(0)+(1-\alpha)(p+\widehat{p}) D(0) \\
& =(p+(1-\alpha) \widehat{p}) D(0)=\mu D(0)=\frac{\mu}{n}
\end{aligned}
$$

- Firms set high mark-ups in the add-on market.
- If there aren't many sophisticates, the add-on mark-ups will be inefficiently high: $\widehat{p}=V>e$.
- High mark-ups for the add-on are offset by low or negative mark-ups on the base good.
- To see this, assume market is competitive, so $\mu \simeq 0$.
- Loss leader base good: $p^{*} \approx-(1-\alpha) V<0$.
- Examples: printers, hotels, banks, credit card teaser, mortgage teaser, cell phone, etc...
- The shrouded market becomes the profit-center because at least some consumers don't anticipate the shrouded add-on market and won't respond to a price cut in the shrouded market.
- Interpretations
- bounded rationality, people don't see small print.
- overconfidence - people believe they will not fail prey to small print penalties.

