14.127 Lecture 7

Xavier Gabaix

March 18, 2004

1 Learning in games

• Drew Fudenberg and David Levine, The Theory of Learning in Games

1.1 Fictitious play

• Let γ_t^i denotes frequencies of *i*'s opponents play

$$\gamma_t^i(s_{-i}) = \frac{\text{number of times } s_{-i} \text{ was played till now}}{t}$$

- Player i plays the best response $BR\left(\gamma_t^i\right)$
- Big concerns:
 - Asymptotic behavior: do we converge or do we cycle?
 - If we converge, then to what subset of Nash equilibria?
- Caveat. Empirical distribution need not converge

1.2 Replicator dynamics

- Call $\theta_t^i(s^i) =$ fraction of players of type i who play s_i .
- Postulate dynamics
 - In discrete time

$$\vec{\theta}_{t+1}^{i} = \left(\theta_{t+1}^{i}\left(s_{1}\right), \dots, \theta_{t+1}^{i}\left(s_{n}\right)\right) = \vec{\theta}_{t}^{i} + \lambda \left(BR\left(\vec{\theta}_{t}^{-i}\right) - \vec{\theta}_{t}^{i}\right)$$

- In continuous time

$$\frac{d}{dt}\vec{\theta}_{t+1}^{i} = \lambda \left(BR\left(\vec{\theta}_{t}^{-i}\right) - \vec{\theta}_{t}^{i} \right)$$

• Then analyze the dynamics: chaos, cycles, fixed points

1.3 Experience weighted attraction model, EWA

- Camerer-Ho, Econometrica 1999
- Denote N_t =number of "observation equivalent" past responses such that

 $N_{t+1} = \rho N_t + 1$

- Denote
 - s_{ij} strategy j of player i
 - $s_i(t)$ strategy that i played at t

-
$$\pi_{i}\left(s_{ij},s_{-i}\left(t
ight)
ight)$$
 - payoff of i

• Perceived payoff with parameter $\phi \in [\mathbf{0},\mathbf{1}]$

$$\begin{aligned} A_{ij}(t) \\ = \frac{1}{N_t} \left[\phi N_{t-1} A_{ij}(t-1) + \left(\delta + (1-\delta) \mathbf{1}_{s_{ij}=s_i(t)} \right) \pi_i \left(s_{ij}, s_{-i}(t) \right) \right] \end{aligned}$$

• Attraction to strategy j

$$\rho_{ij}(t) = \frac{e^{\lambda A_{ij}(t)}}{\sum_{j'} e^{\lambda A_{ij'}(t)}}$$

- At time t + 1 player i plays j with probability $\rho_{ij}(t)$
- Free parameters: $\delta, \phi, \rho, A_{ij}(0), N(0)$

- Some cases
 - If $\delta = 0$ reinforcement learning (called also law of effect). You only reinforce strategies that you actually played
 - If $\delta > 0$ law of simulated effect

- If $\phi = 0$ - agent very forgetful

- **Proposition.** If $\phi = \rho$ and $\delta = 1$ then EWA is a belief-based model. Makes predictions of fictitious play.
- If $N(0) = \infty$ and $A_{ij}(0) =$ equilibrium payoffs then EWA agent is a dogmatic game theorist.

1.3.1 Functional EWA (f-EWA)

- Has just one parameters. Other endogenized. But still looks like data fitting.
- Camerer, Ho, and Chong working paper
- They look after parameters that fit all the games
- They R^2 is good
- Other people in this field: Costa-Gomez, Crawford, Erev

1.3.2 Critique

- Those things are more endogenous than postulated.
- E.g. fictitious play guy does not detect trends, but people do detect trends
- How do you model patterns, how do you detect patterns. Whole field of pattern recognition in cognitive psychology
- If you are interested in strategy number 1069, then strategy 1068 should benefit also. There is some smoothing

1.4 Cognitive hierarchy model of one-shot games

- Camerer Ho, QJE forthcoming
- s_i^i strategy j of player i and $\pi_i(s_i, s_{-i})$ profit of player i
- Each level 0 player:
 - just postulates that other players play at random with probability $\frac{1}{N}$
 - best responses to that belief

• Each level k player:

– thinks that there is a fraction of players of levels $h \in \{0, ..., k-1\}$

- proportions are
$$g_k(h) = \frac{f(h)}{\sum_{h'=0}^{k-1} f(h')}$$
 and $g_k(h) = 0$ for $h \ge k$

- k-players best response to this belief

• Camerer-Ho postulate a Poisson distribution for f with parameter τ ,

$$f(k) = e^{-\tau} \frac{\tau^k}{k!}$$

with $Ek = \sum_{k \ge 0} kf(k) = \tau$.

• The authors calibrate to empirical data and find the average $au \simeq 1.5$.

1.5 An open problem – asymmetric information

- James has a plant with value V uniformly distributed over [0, 100].
- $\bullet\,$ James know V, you don't
- You are a better manager than James; the value to you is $\frac{3}{2}V$
- You can make a take it or leave it offer to James of x.
- What you would do?

- Empirically people offer between 50 and 75. But that is not the rational value.
- **Proposition.** The rational offer is 0.
- Proof. You offer x.
 - If V > x then James refuses, and your payoff W = 0.
 - If $V \le x$ then V is uniformly distributed between 0 and x. Hence your expected value is $W = \frac{3}{2} \cdot \frac{x}{2} x = -\frac{x}{4}$.
 - Hence best you can do is set x = 0. QED

1.5.1 How to model people's choice?

- This game is not covered by cognitive hierarchy model. It is a single person decision problem.
- Maybe people approximate V by, for example, a unit mass at the mean V = 50?
- Other question. You own newspaper stand. You can buy newspaper for \$1 and have a chance to sell for \$4. There are no returns. The demand is uniform between 50 and 150. How many would you buy?
- Something along those lines will be in Problem Set 3.