14.127 Lecture 7

Xavier Gabaix

March 18, 2004

1 Learning in games

- Drew Fudenberg and David Levine, The Theory of Learning in Games

1.1 Fictitious play

- Let γ_{t}^{i} denotes frequencies of i 's opponents play

$$
\gamma_{t}^{i}\left(s_{-i}\right)=\frac{\text { number of times } s_{-i} \text { was played till now }}{t}
$$

- Player i plays the best response $B R\left(\gamma_{t}^{i}\right)$
- Big concerns:
- Asymptotic behavior: do we converge or do we cycle?
- If we converge, then to what subset of Nash equilibria?
- Caveat. Empirical distribution need not converge

1.2 Replicator dynamics

- Call $\theta_{t}^{i}\left(s^{i}\right)=$ fraction of players of type i who play s_{i}.
- Postulate dynamics
- In discrete time

$$
\vec{\theta}_{t+1}^{i}=\left(\theta_{t+1}^{i}\left(s_{1}\right), \ldots, \theta_{t+1}^{i}\left(s_{n}\right)\right)=\vec{\theta}_{t}^{i}+\lambda\left(B R\left(\vec{\theta}_{t}^{-i}\right)-\vec{\theta}_{t}^{i}\right)
$$

- In continuous time

$$
\frac{d}{d t} \vec{\theta}_{t+1}^{i}=\lambda\left(B R\left(\vec{\theta}_{t}^{-i}\right)-\vec{\theta}_{t}^{i}\right)
$$

- Then analyze the dynamics: chaos, cycles, fixed points

1.3 Experience weighted attraction model, EWA

- Camerer-Ho, Econometrica 1999
- Denote $N_{t}=$ number of "observation equivalent" past responses such that

$$
N_{t+1}=\rho N_{t}+1
$$

- Denote
- $s_{i j}-$ strategy j of player i
- $s_{i}(t)$ - strategy that i played at t
- $\pi_{i}\left(s_{i j}, s_{-i}(t)\right)$ - payoff of i
- Perceived payoff with parameter $\phi \in[0,1]$

$$
\begin{aligned}
& A_{i j}(t) \\
& =\frac{1}{N_{t}}\left[\phi N_{t-1} A_{i j}(t-1)+\left(\delta+(1-\delta) 1_{s_{i j}=s_{i}(t)}\right) \pi_{i}\left(s_{i j}, s_{-i}(t)\right)\right]
\end{aligned}
$$

- Attraction to strategy j

$$
\rho_{i j}(t)=\frac{e^{\lambda A_{i j}(t)}}{\sum_{j^{\prime}} e^{\lambda A_{i j^{\prime}}(t)}}
$$

- At time $t+1$ player i plays j with probability $\rho_{i j}(t)$
- Free parameters: $\delta, \phi, \rho, A_{i j}(0), N(0)$
- Some cases
- If $\delta=0$ - reinforcement learning (called also law of effect). You only reinforce strategies that you actually played
- If $\delta>0$ - law of simulated effect
- If $\phi=0$ - agent very forgetful
- Proposition. If $\phi=\rho$ and $\delta=1$ then EWA is a belief-based model. Makes predictions of fictitious play.
- If $N(0)=\infty$ and $A_{i j}(0)=$ equilibrium payoffs then EWA agent is a dogmatic game theorist.

1.3.1 Functional EWA (f-EWA)

- Has just one parameters. Other endogenized. But still looks like data fitting.
- Camerer, Ho, and Chong working paper
- They look after parameters that fit all the games
- They R^{2} is good
- Other people in this field: Costa-Gomez, Crawford, Erev

1.3.2 Critique

- Those things are more endogenous than postulated.
- E.g. fictitious play guy does not detect trends, but people do detect trends
- How do you model patterns, how do you detect patterns. Whole field of pattern recognition in cognitive psychology
- If you are interested in strategy number 1069, then strategy 1068 should benefit also. There is some smoothing

1.4 Cognitive hierarchy model of one-shot games

- Camerer - Ho, QJE forthcoming
- s_{i}^{i} - strategy j of player i and $\pi_{i}\left(s_{i}, s_{-i}\right)$ - profit of player i
- Each level 0 player:
- just postulates that other players play at random with probability $\frac{1}{N}$
- best responses to that belief
- Each level k player:
- thinks that there is a fraction of players of levels $h \in\{0, \ldots, k-1\}$
- proportions are $g_{k}(h)=\frac{f(h)}{\sum_{h^{\prime}=0}^{k-1} f\left(h^{\prime}\right)}$ and $g_{k}(h)=0$ for $h \geq k$
- k-players best response to this belief
- Camerer-Ho postulate a Poisson distribution for f with parameter τ,

$$
f(k)=e^{-\tau} \frac{\tau^{k}}{k!}
$$

with $E k=\sum_{k \geq 0} k f(k)=\tau$.

- The authors calibrate to empirical data and find the average $\tau \simeq 1.5$.

1.5 An open problem - asymmetric information

- James has a plant with value V uniformly distributed over $[0,100]$.
- James know V, you don't
- You are a better manager than James; the value to you is $\frac{3}{2} V$
- You can make a take it or leave it offer to James of x.
- What you would do?
- Empirically people offer between 50 and 75 . But that is not the rational value.
- Proposition. The rational offer is 0 .
- Proof. You offer x.
- If $V>x$ then James refuses, and your payoff $W=0$.
- If $V \leq x$ then V is uniformly distributed between 0 and x. Hence your expected value is $W=\frac{3}{2} \cdot \frac{x}{2}-x=-\frac{x}{4}$.
- Hence best you can do is set $x=0$. QED

1.5.1 How to model people's choice?

- This game is not covered by cognitive hierarchy model. It is a single person decision problem.
- Maybe people approximate V by, for example, a unit mass at the mean $V=50$?
- Other question. You own newspaper stand. You can buy newspaper for $\$ 1$ and have a chance to sell for $\$ 4$. There are no returns. The demand is uniform between 50 and 150. How many would you buy?
- Something along those lines will be in Problem Set 3.

