W ealth Accumulation,

Credit Card Borrowing, and

Consumption-Income Comovement

David Laibson, Andrea Repetto, and
J eremy Tobacman

Current Draft: M arch 2002

Self-reports about saving.
${ }^{2}$ Consumers report a preference for ${ }^{\circ}$ at or rising consumption paths.
${ }^{2}$ Baby boomers report median target savings rate of 15%.
${ }^{2}$ Actual median savings rate is 5%.
${ }^{2} 76 \%$ of household's believe they should be saving more for retirement (Public Agenda, 1997).
${ }^{2}$ Of those who feel that they are at a point in their lives when they \backslash should be seriously saving already," only 6% report being \ahead" in their saving, while 55% report being \backslash behind."

Further evidence: Normative value of commitment.
${ }^{2}$ \Use whatever means possible to remove a set amount of money from your bank account each month before you have a chance to spend it."
${ }^{2}$ Choose excess withholding.
${ }^{2}$ Cut up credit cards, put them in a safe deposit box, or freeze them in a block of ice.
${ }^{2} \backslash$ Sixty percent of Americans say it is better to keep, rather than loosen legal restrictions on retirement plans so that people don't use the money for other things."
${ }^{2}$ Social Security and Roscas.
${ }^{2}$ Christmas Clubs (10 mil. accounts).

1 Consumption-Savings Behavior

${ }^{2}$ Substantial retirement wealth accumulation (SCF)
${ }^{2}$ Extensive credit card borrowing (SCF, Fed, Gross and Souleles 2000, Laibson, Repetto, and Tobacman 2000)
${ }^{2}$ Consumption-income comovement (Hall and M ishkin 1982, many others)

2 Anomalous retirement consumption drop (Banks et al 1998, Bernheim, Skinner, and W einberg 1997)

2 Data

Statistic	m_{e}	$\mathrm{se}_{\mathrm{m}_{\mathrm{e}}}$
\% borrowing on Visa' ? (\% Visa)	0.68	0.015
borrowing / mean income (mean Visa)	0.12	0.01
C-Y comovement		
(CY)		

2 Three moments on previous slide (wealth, \% Visa, mean Visa) from SCF data. Correct for cohort, household demographic, and business cycle effects, so simulated and empirical hh's are analogous. Compute covariances directly.
${ }^{2}$ C-Y from PSID:

$$
\begin{equation*}
\Phi \ln \left(C_{i t}\right)=\mathbb{R E}_{t_{i} 1} \phi \ln \left(Y_{i t}\right)+X_{i t}^{-}+"_{i t} \tag{1}
\end{equation*}
$$

${ }^{2}$ C drop from PSID

$$
\begin{equation*}
\Phi \ln \left(C_{i t}\right)=l_{i t}^{\text {RETIRE。 }}+X_{i t}^{-}+"_{i t} \tag{2}
\end{equation*}
$$

2 "A Debt Puzzle": only "\% Visa" and "wealth"

2 "JEP paper": add "liquid share" and "\% low liquid wealth"

Table 1. Credit Card Debt ${ }^{\text {a,b }}$

		Conditional on Having a Credit Card		
			Balance	
	\% with Card	\% with Debt	Mean	Median
All categories				
$20-29$	0.72	0.77	1668	746
$30-39$	0.77	0.76	2114	772
$40-49$	0.85	0.72	2487	760
$50-59$	0.84	0.60	1603	343
$60-69$	0.83	0.43	980	0
$70+$	0.80	0.27	250	0
All ages	0.80	0.63	1715	343
No high school diploma				
$20-29$	0.68	0.83	1823	849
$30-39$	0.66	0.77	2559	943
$40-49$	0.77	0.84	2988	815
$50-59$	0.73	0.71	1910	549
$60-69$	0.71	0.55	1115	129
$70+$	0.76	0.35	285	0
All ages	0.72	0.68	1832	429
High school graduates				
$20-29$	0.60	0.84	1885	935
30	0.39	0.86	1673	858
$40-49$	0.81	0.73	2274	772
$50-59$	0.84	0.72	1424	515
$60-69$	0.85	0.44	722	0
$70+$	0.75	0.28	265	0
All ages	0.77	0.70	1537	472
College graduates				
$20-29$	0.89	0.65	1364	600
$30-39$	0.92	0.65	2213	532
$40-49$	0.93	0.64	2340	497
$50-59$	0.96	0.40	1545	0
$60-69$	1.00	0.26	1143	0
$70+$	0.93	0.13	180	0
All ages	0.93	0.53	1767	94

Source: Authors' calculations based on the 1995 SCF.
${ }^{\text {a }}$ Includes traditional cards such as Visa, Mastercard, Discover and Optima, and other credit or charge cards such as Diners Club, American Express, store cards, airline cards, car rental cards, and gasoline cards.
Excludes business and company cards.
${ }^{\text {b }}$ The total credit card debt is constructed on the basis of the responses to the following SCF question:
"After the last payments were made on this (these) account(s), roughly what was the balance still owed on this (these) account(s)?"

Table 2. Fraction of Households Borrowing on Credit Cards Across the Distribution of Wealth ${ }^{\text {a,b }}$

	Wealth Distribution Percentile			
Age group	Less than 25	$25-50$	$50-75$	Over 75
All categories				
20-29	0.87	0.77	0.70	0.65
$30-39$	0.86	0.80	0.69	0.51
$40-49$	0.79	0.76	0.56	0.41
$50-59$	0.75	0.65	0.40	0.27
$60-69$	0.55	0.40	0.25	0.18
$70+$	0.48	0.26	0.11	0.05
Incomplete High School	0.91	0.83	0.67	0.82
$20-29$	0.73	0.82	0.78	0.70
$30-39$	0.84	0.85	0.80	0.60
$40-49$	0.83	0.67	0.75	0.45
$50-59$	0.60	0.51	0.39	0.25
$60-69$	0.57	0.30	0.24	0.10
$70+$				
	0.89	0.78	0.82	0.73
High School Graduates				
$20-29$	0.90	0.83	0.83	0.66
$30-39$	0.79	0.79	0.74	0.50
$40-49$	0.60	0.72	0.55	0.40
$50-59$	0.47	0.29	0.31	0.24
$60-69$			0.09	0.14
$70+$	0.81	0.65		
	0.82	0.61	0.51	0.56
College Graduates	0.71	0.53	0.44	0.39
$20-29$	0.63	0.38	0.24	0.20
$30-39$	0.41	0.20	0.09	0.10
$40-49$	0.28	0.07	0.06	0.03
$50-59$				
$60-69$				
$70+$				

Source: Authors' calculations based on the 1983-1995 SCFs.
${ }^{\text {a }}$ Conditional on having a credit card.
${ }^{\mathrm{b}}$ We calculated the fraction of households who are borrowing in each quartile of the wealth distribution contingent on age and education group, for every SCF year. The table reports the weighted average across the 4 SCF years, using the proportion of households with credit cards in a given year/category as weights.

Table 3. Wealth-Income Ratios

Age Group	Means					Medians				
	$1983{ }^{\text {a }}$	1989	1992	1995	Average	$1983{ }^{\text {a }}$	1989	1992	1995	Average
All categories										
20-29	1.26	3.29	1.07	1.42	1.76	0.45	0.41	0.42	0.52	0.45
30-39	2.97	2.70	2.59	2.38	2.66	1.32	1.27	1.03	1.14	1.19
40-49	5.16	6.69	4.78	4.98	5.40	2.07	2.45	1.87	1.84	2.06
50-59	8.00	8.06	8.82	8.03	8.23	2.91	3.90	3.87	3.34	3.50
60-69	11.82	19.56	15.30	14.43	15.28	4.07	5.73	5.14	5.13	5.02
70+	13.06	24.08	21.35	24.91	20.85	4.67	7.02	10.13	8.30	7.53
Incomplete High School										
20-29	0.54	1.49	0.78	0.93	0.94	0.22	0.32	0.31	0.42	0.32
30-39	1.87	2.26	1.71	1.65	1.87	0.52	1.27	0.58	0.76	0.78
40-49	3.13	6.64	3.43	4.22	4.35	1.07	2.02	1.53	1.30	1.48
50-59	3.67	6.21	4.44	5.82	5.03	2.29	3.41	2.19	2.16	2.51
60-69	7.19	14.25	9.59	9.73	10.19	2.98	5.00	3.73	3.30	3.75
70+	9.67	24.81	16.56	18.42	17.37	3.75	5.97	9.05	6.95	6.43
High School Graduate										
20-29	1.40	2.63	1.10	1.44	1.64	0.46	0.40	0.37	0.47	0.42
30-39	3.08	1.97	2.59	2.22	2.47	1.22	0.86	0.94	1.17	1.05
40-49	3.72	4.11	2.32	3.94	3.52	2.20	2.33	1.22	1.69	1.86
50-59	11.39	7.53	9.18	6.51	8.65	2.78	3.69	3.75	2.74	3.24
60-69	13.10	18.06	15.80	15.35	15.57	4.31	6.53	5.44	6.55	5.71
70+	18.55	21.74	21.79	23.46	21.39	6.08	7.85	10.90	9.25	8.52
College Graduate										
20-29	1.31	5.91	1.31	1.97	2.63	0.63	0.82	0.46	0.92	0.71
30-39	3.20	3.72	3.23	3.23	3.34	1.75	1.58	1.44	1.35	1.53
40-49	9.49	8.85	7.34	6.22	7.97	2.33	3.28	2.69	2.42	2.68
50-59	7.90	11.19	12.39	12.12	10.90	3.57	4.78	4.71	4.32	4.34
60-69	21.89	34.40	23.15	21.73	25.29	7.98	8.38	8.49	9.05	8.48
70+	18.08	24.34	32.09	39.35	28.47	11.03	9.85	12.89	14.09	11.97

Sources: SCF, Social Security Administration, Congressional Budget Office and Pechman (1989).
Income is after tax non-asset income, plus bequests. Taxes include Social Security deductions, and
Federal income taxes. Social Security deductions were imputed using OASDI-HI tax rates and maximum
taxable earnings. Federal income taxes were imputed using effective tax rates as reported by the CBO and Pechman.
${ }^{\text {a }}$ Bequests are imputed using Laibson, Repetto and Tobacman (1998) calculations.

3 Digression: Model-building

3.1 W hy do people save?
3.2 W hy do people borrow on credit cards?

4 Model

${ }^{2}$ Recent consumption papers use simulations
${ }^{2}$ Rich environments, eg with income uncertainty and liquidity constraints
${ }^{2}$ Literature pioneered by Carroll (1992, 1997), Deaton (1991), and Zeldes (1989)
${ }^{2}$ Gourinchas and Parker (2001) use method of simulated moments (MSM) to estimate a structural model of life-cycle consumption

4.1 Demographics

${ }^{2}$ M ortality, Retirement (PSID), Dependents (PSID), HS educational group

4.2 Income from transfers and wages

${ }^{2} Y_{t}=$ after-tax labor and bequest income plus govt transfers (assumed exog., calibrated from PSID)
${ }^{2} y_{t}^{\prime} \ln \left(Y_{t}\right)$: During working life:

$$
\begin{equation*}
y_{t}=f^{W}(t)+u_{t}+o_{t}^{W} \tag{3}
\end{equation*}
$$

${ }^{2}$ During retirement:

$$
\begin{equation*}
y_{t}=f^{R}(t)+\frac{o R}{t} \tag{4}
\end{equation*}
$$

4.3 Liquid assets and non-collateralized debt

${ }^{2} X_{t}+Y_{t}$ represents liquid asset holdings at the beginning of period t :
${ }^{2}$ Credit limit: $X_{t}, i, \phi \mathbf{~}_{t}$

2 , =:30; so average credit limit is approximately \$8,000 (SCF).
${ }^{2}$ Liquid asset aftertax interest rate: 2\%,3\%,3.75\%
${ }^{2}$ Credit card interest rate: 9\%,10\%,11.75\%

4.4 Illiquid assets

${ }^{2} Z_{t}$ represents illiquid asset holdings at age t :

2 Z bounded below by zero.
${ }^{2} \mathrm{Z}$ generates consumption ${ }^{\circ}$ ows each period of ${ }^{\circ} \mathrm{Z}$; set ${ }^{\circ}=5 \%, 6 \%, 7 \%$
${ }^{2}$ Conceive of Z as having some of the properties of home equity.
${ }^{2}$ Disallow withdrawals from Z ; Z is perfectly illiquid.
${ }^{2}$ Z stylized to preserve computational tractability.

Z is perfectly illiquid; withdrawals from Z are disallowed.

1. House of value H, mortgage of size M.
2. Consumption ${ }^{\circ} \mathrm{ow}$ of ${ }^{\circ} \mathrm{H}$; minus interest cost of ' M ; where ${ }^{\prime}=\mathrm{i} \phi\left(1 \mathrm{i} \quad\right.$ i) i° :
3. ${ }^{\circ} 1 / 4^{\prime}=$) net consumption ${ }^{\circ} \mathrm{ow}$ of ${ }^{\circ} \mathrm{H}_{\mathrm{i}}{ }^{\prime} \mathrm{M}^{1 / 4}$ ${ }^{\circ}(\mathrm{H} ; \mathrm{M})={ }^{\circ} \mathrm{Z}$:W e've explored di®erent possibilities for withdrawals from Z before..

4.5 Time Preferences

${ }^{2}$ Discount function:

$$
\mathrm{f} ;{ }^{-} \pm{ }^{-} \pm^{2} ;{ }^{-} \pm^{3} ;::: \mathrm{g}
$$

$2^{-}=1$: standard exponential discounting case
$2^{-}<1$: preferences are qualitatively hyperbolic
${ }^{2}$ Null hypothesis: ${ }^{-}=1$

$$
\begin{equation*}
U_{t}\left(f C_{i} g_{i=t}^{\top}\right)=u\left(C_{t}\right)+{\underset{i=t+1}{X^{\top}} \pm i u\left(C_{i}\right) .}_{x^{\prime}} \tag{5}
\end{equation*}
$$

In full detail, self t has instantaneous payo ${ }^{\circledR}$ function

$$
u\left(C_{t} ; Z_{t} ; n_{t}\right)=n_{t} \phi \frac{{ }^{3}{\frac{C_{t}+{ }^{\circ} Z_{t}}{n_{t}}{ }^{1_{i}}{ }^{\circ}{ }_{i} 1}_{1_{i}}{ }^{\circ}}{}
$$

and continuation payo®s given by:

$$
\begin{aligned}
& -{ }^{T++X N i t} \pm^{3}{ }_{i=1}^{i j}{ }_{j=1}^{1} S_{t+j} \quad\left(S_{t+i}\right) \phi u\left(C_{t+i} ; Z_{t+i} ; n_{t+i}\right)::: \\
& i=1
\end{aligned}
$$

${ }^{2} n_{t}$ is e®ective household size: adults+(.4)(kids)
$2^{\circ} Z_{t}$ represents real after-tax net consumption ${ }^{\circ} \mathrm{ow}$
${ }^{2} s_{t+1}$ is survival probability
${ }^{2} B(\$)$ represents the payo $®$ in the death state

4.6 Computation

${ }^{2}$ Dynamic problem:

$$
\max _{1_{\mathrm{t}}^{\mathrm{x},,_{\mathrm{t}}^{\mathrm{Z}}}} \mathrm{u}\left(\mathrm{C}_{\mathrm{t}} ; \mathrm{Z}_{\mathrm{t}} ; \mathrm{n}_{\mathrm{t}}\right)+{ }^{-} \mathbb{E}_{\mathrm{t}} \mathrm{~V}_{\mathrm{t} ; \mathrm{t}+1}\left(\mathrm{x}_{\mathrm{t}+1}\right)
$$

s:t: Budget constraints
${ }^{2} w_{t}=\left(X_{t}+Y_{t} ; Z_{t} ; u_{t}\right)$ (state variables)

2 Functional Equation:
$V_{t_{i} 1 ; t}\left(x_{t}\right)=$
$f s_{t}\left[u\left(C_{t} ; Z_{t} ; n_{t}\right)+\Psi_{t} V_{t ; t+1}\left(x_{t+1}\right)\right]+\left(1 ; s_{t}\right) E_{t} B\left(x_{t}\right)$
${ }^{2}$ Solve for eq strategies using backwards induction
${ }^{2}$ Simulate behavior
${ }^{2}$ Calculate descriptive moments of consumer behavior

5 Estimation

Estimate parameter vector μ and evaluate models wrt data.
$2 \mathrm{~m}_{\mathrm{e}}=\mathrm{N}$ empirical moments, VCV matrix $=-$
$2 \mathrm{~m}_{\mathrm{s}}(\mu)=$ analogous simulated moments
${ }^{2} q(\mu)^{\prime}\left(m_{s}(\mu) ; m_{e}\right)-i^{1}\left(m_{s}(\mu) ; m_{e}\right)^{0}$, a scalarvalued loss function

2 M inimize loss function: $\hat{\mu}=\arg \min _{\mu} q(\mu)$
${ }^{2} \hat{\mu}$ is the MSM estimator.

2 Pakes and Pollard (1989) prove asymptotic consistency and normality.

2 Speci- cation tests: $q(\hat{\mu})$ » $\hat{A}^{2}\left(N_{i}\right.$ \# parameters $)$

6 Results

${ }^{2}$ Exponential (${ }^{-}=1$) case:

$$
\hat{ \pm}=: 857 \S: 005 ; \quad \mathrm{q} \hat{\ddagger} 1=512
$$

${ }^{2}$ Hyperbolic case:

$$
\begin{aligned}
& \hat{\widehat{ \pm}}=: 661 \S: 012 \quad \mathrm{q}^{3} \hat{\Psi}^{\wedge}=75 \\
& \hat{\underline{ \pm}}=: 956 \S: 001
\end{aligned}
$$

(Conservative case: ${ }^{h} \mathrm{R}^{\mathrm{X}} ;{ }^{\circ} ; \mathrm{R}^{\mathrm{CC}}=[1: 0375 ; 0: 05 ; 1: 1175$

Punchlines:

$2{ }^{-}$estimated signi- cantly below 1.
${ }^{2}$ Reject $^{-}=1$ null hypothesis with a t-stat of 25 .
${ }^{2}$ Speci- cation tests reject both the exponential and the hyperbolic models.

$\begin{gathered} \text { Ã Statistic } \\ 3: 75 \% ; 5 \% ; \\ 11: 75 \% \end{gathered}$	$\begin{aligned} & m_{s}(1 ; \hat{ \pm} \\ & \hat{ \pm}=: 857 \end{aligned}$	$\begin{aligned} & \mathrm{m}_{\mathrm{s}}\left({ }^{\wedge} ; \hat{\sharp}\right. \\ & =: 661 \\ & \hat{\mathrm{t}}=: 956 \end{aligned}$	me	$\mathrm{Sem}_{\mathrm{m}}$
\% Visa	0.62	0.65	0.68	0.015
mean Visa	0.14	0.17	0.12	0.01
CY	0.26	0.35	0.23	0.11
Cdrop	0.16	0.18	0.09	0.07
wealth	0.04	2.51	2.60	0.13
$q(\hat{\mu})$	512	75		

Robustness:
Aggressive: ${ }^{h} R^{X} ;{ }^{0} ; \mathrm{R}^{C C^{i}}=[1: 02 ; 0: 07 ; 1: 09]$ Intermediate: ${ }^{h}{ }^{h}{ }^{\mathrm{X}} ;{ }^{\circ} ; \mathrm{RCC}^{\mathrm{i}}=[1: 03 ; 0: 06 ; 1: 10]$ Conservative: ${ }^{h} \mathrm{R}^{\mathrm{x}} ;{ }^{\circ} ; \mathrm{R}^{\mathrm{CC}}{ }^{\mathrm{i}}=[1: 0375 ; 0: 05 ; 1: 1175]$

	Aggressive	Intermediate	Conservative
$\begin{gathered} \exp \\ \underline{\underline{1}} \end{gathered}$	$\begin{aligned} & .923 \\ & \text { (:002) } \end{aligned}$	$\begin{aligned} & .930 \\ & (: 001) \end{aligned}$	$\begin{gathered} .857 \\ (: 005) \end{gathered}$
$q^{3} \hat{1} 1$	64	278	512
$\begin{aligned} & \text { hyyp }{ }_{i} \\ & \hat{\sim} \end{aligned}$	$\begin{array}{l:l} {[: 932 ;} & : 909] \\ (: 002) ;(: 016) \end{array}$	$\begin{aligned} & {[: 944 ;: 815]} \\ & (: 001) ;(: 014) \end{aligned}$	$\begin{aligned} & {[: 956 ;: 661]} \\ & (: 001) ;(: 012) \end{aligned}$
$q^{3} \hat{\underline{~}}^{\wedge}$	33	45	75

$\begin{gathered} \text { Statistic } \\ (2 \% ; 7 \% ; 9 \%) \end{gathered}$	$\begin{aligned} & \mathrm{m}_{\mathrm{s}}(1 ; \boldsymbol{H} \\ & \hat{\mathrm{I}=: 923} \end{aligned}$		me	$\mathrm{Sem}_{\mathrm{e}}$
\% Visa	0.58	0.65	0.68	0.015
mean Visa	0.12	0.15	0.12	0.01
CY	0.14	0.19	0.23	0.11
Cdrop	0.12	0.14	0.09	0.07
wealth	2.53	2.66	2.60	0.13
$q(\hat{\mu})$	64	33		

$\begin{gathered} \text { Statistic } \\ (3 \% ; 6 \% ; 10 \%) \end{gathered}$	$\begin{aligned} & \mathrm{m}_{s}(1 ; \boldsymbol{1} \\ & \hat{\mathrm{I}=: 930} \end{aligned}$	$\begin{aligned} & \mathrm{m}_{\mathrm{s}}(\hat{\wedge} \text { : } \boldsymbol{\eta} \\ & ==: 815 \\ & \hat{\underline{I}=: 944} \end{aligned}$	me	$\mathrm{Sem}_{\mathrm{me}}$
\% Visa	0.44	0.65	0.68	0.015
mean Visa	0.08	0.16	0.12	0.01
CY	0.10	0.22	0.23	0.11
Cdrop	0.08	0.14	0.09	0.07
wealth	2.50	2.61	2.60	0.13
$q(\hat{\mu})$	278	45		

7 Conclusion

${ }^{2}$ Structural test using the method of simulated moments rejects the exponential discounting null.
${ }^{2}$ Speci- cation tests reject both the exponential and the hyperbolic models.
${ }^{2}$ Quantitative results are sensitive to interest rate assumptions.

2 Hyperbolic discounting does a better job of matching the available empirical evidence on consumption and savings.

